期刊文献+
共找到1,115篇文章
< 1 2 56 >
每页显示 20 50 100
Genetic-Frog-Leaping Algorithm for Text Document Clustering 被引量:1
1
作者 Lubna Alhenak Manar Hosny 《Computers, Materials & Continua》 SCIE EI 2019年第9期1045-1074,共30页
In recent years,the volume of information in digital form has increased tremendously owing to the increased popularity of the World Wide Web.As a result,the use of techniques for extracting useful information from lar... In recent years,the volume of information in digital form has increased tremendously owing to the increased popularity of the World Wide Web.As a result,the use of techniques for extracting useful information from large collections of data,and particularly documents,has become more necessary and challenging.Text clustering is such a technique;it consists in dividing a set of text documents into clusters(groups),so that documents within the same cluster are closely related,whereas documents in different clusters are as different as possible.Clustering depends on measuring the content(i.e.,words)of a document in terms of relevance.Nevertheless,as documents usually contain a large number of words,some of them may be irrelevant to the topic under consideration or redundant.This can confuse and complicate the clustering process and make it less accurate.Accordingly,feature selection methods have been employed to reduce data dimensionality by selecting the most relevant features.In this study,we developed a text document clustering optimization model using a novel genetic frog-leaping algorithm that efficiently clusters text documents based on selected features.The proposed approach is based on two metaheuristic algorithms:a genetic algorithm(GA)and a shuffled frog-leaping algorithm(SFLA).The GA performs feature selection,and the SFLA performs clustering.To evaluate its effectiveness,the proposed approach was tested on a well-known text document dataset:the“20Newsgroup”dataset from the University of California Irvine Machine Learning Repository.Overall,after multiple experiments were compared and analyzed,it was demonstrated that using the proposed algorithm on the 20Newsgroup dataset greatly facilitated text document clustering,compared with classical K-means clustering.Nevertheless,this improvement requires longer computational time. 展开更多
关键词 Text documents clustering meta-heuristic algorithms shuffled frog-leaping algorithm genetic algorithm feature selection
下载PDF
A New Clustering Protocol for Wireless Sensor Networks Using Genetic Algorithm Approach 被引量:2
2
作者 Ali Norouzi Faezeh Sadat Babamir Abdul Halim Zaim 《Wireless Sensor Network》 2011年第11期362-370,共9页
This paper examines the optimization of the lifetime and energy consumption of Wireless Sensor Networks (WSNs). These two competing objectives have a deep influence over the service qualification of networks and accor... This paper examines the optimization of the lifetime and energy consumption of Wireless Sensor Networks (WSNs). These two competing objectives have a deep influence over the service qualification of networks and according to recent studies, cluster formation is an appropriate solution for their achievement. To transmit aggregated data to the Base Station (BS), logical nodes called Cluster Heads (CHs) are required to relay data from the fixed-range sensing nodes located in the ground to high altitude aircraft. This study investigates the Genetic Algorithm (GA) as a dynamic technique to find optimum states. It is a simple framework that includes a proposed mathematical formula, which increasing in coverage is benchmarked against lifetime. Finally, the implementation of the proposed algorithm indicates a better efficiency compared to other simulated works. 展开更多
关键词 WIRELESS Sensor Network Energy CONSUMPTION genetic algorithm CLUSTER Based FITNESS Function
下载PDF
The Effective Clustering Partition Algorithm Based on the Genetic Evolution 被引量:1
3
作者 廖芹 李希雯 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期43-46,共4页
To the problem that it is hard to determine the clustering number and the abnormal points by using the clustering validity function, an effective clustering partition model based on the genetic algorithm is built in t... To the problem that it is hard to determine the clustering number and the abnormal points by using the clustering validity function, an effective clustering partition model based on the genetic algorithm is built in this paper. The solution to the problem is formed by the combination of the clustering partition and the encoding samples, and the fitness function is defined by the distances among and within clusters. The clustering number and the samples in each cluster are determined and the abnormal points are distinguished by implementing the triple random crossover operator and the mutation. Based on the known sample data, the results of the novel method and the clustering validity function are compared. Numerical experiments are given and the results show that the novel method is more effective. 展开更多
关键词 clustering validity genetic algorithm clustering number abnormal point.
下载PDF
An unequal clustering routing protocal for wireless sensor networks based on genetic algorithm 被引量:1
4
作者 WANG Lei HUO Jiuyuan Al-Neshmi Hamzah Murad Mohammed 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期329-344,共16页
The imbalance of energy consumption in wireless sensor networks(WSNs)easily results in the“hot spot”problem that the sensor nodes in a particular area die due to fast energy consumption.In order to solve the“hot s... The imbalance of energy consumption in wireless sensor networks(WSNs)easily results in the“hot spot”problem that the sensor nodes in a particular area die due to fast energy consumption.In order to solve the“hot spot”problem in WSNs,we propose an unequal clustering routing algorithm based on genetic algorithm(UCR-GA).In the cluster head election phase,the fitness function is constructed based on the residual energy,density and distance between nodes and base station,and the appropriate node is selected as the cluster head.In the data transmission phase,the cluster head selects single-hop or multi-hop communication mode according to the distance to the base station.After we comprehensively consider the residual energy of the cluster head and its communication energy consumption with the base station,an appropriate relay node is selected.The designed protocal is simulated under energy homogeneous and energy heterogeneity conditions,and the results show that the proposed routing protocal can effectively balance energy consumption,prolong the life cycle of network,and is appicable to heterogeneous networks. 展开更多
关键词 wireless sensor networks(WSNs) genetic algorithm(GA) unequal clustering MULTI-HOP life cycle of network energy consumption
下载PDF
Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis 被引量:3
5
作者 LIU Bo WANG Yong WANG Hong-jian 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期547-551,共5页
关键词 聚类分析 遗传算法 模糊自适应谐振理论 人工神经网络
下载PDF
Hybrid Genetic Algorithm with K-Means for Clustering Problems 被引量:1
6
作者 Ahamed Al Malki Mohamed M. Rizk +1 位作者 M. A. El-Shorbagy A. A. Mousa 《Open Journal of Optimization》 2016年第2期71-83,共14页
The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty c... The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty clusters depending on initial center vectors. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary principles of natural selection and genetics. This paper presents a hybrid version of the k-means algorithm with GAs that efficiently eliminates this empty cluster problem. Results of simulation experiments using several data sets prove our claim. 展开更多
关键词 Cluster Analysis genetic algorithm K-MEANS
下载PDF
Binary-Real Coded Genetic Algorithm Based <i>k</i>-Means Clustering for Unit Commitment Problem
7
作者 Mai A. Farag M. A. El-Shorbagy +2 位作者 I. M. El-Desoky A. A. El-Sawy A. A. Mousa 《Applied Mathematics》 2015年第11期1873-1890,共18页
This paper presents a new algorithm for solving unit commitment (UC) problems using a binary-real coded genetic algorithm based on k-means clustering technique. UC is a NP-hard nonlinear mixed-integer optimization pro... This paper presents a new algorithm for solving unit commitment (UC) problems using a binary-real coded genetic algorithm based on k-means clustering technique. UC is a NP-hard nonlinear mixed-integer optimization problem, encountered as one of the toughest problems in power systems, in which some power generating units are to be scheduled in such a way that the forecasted demand is met at minimum production cost over a time horizon. In the proposed algorithm, the algorithm integrates the main features of a binary-real coded genetic algorithm (GA) and k-means clustering technique. The binary coded GA is used to obtain a feasible commitment schedule for each generating unit;while the power amounts generated by committed units are determined by using real coded GA for the feasible commitment obtained in each interval. k-means clustering algorithm divides population into a specific number of subpopulations with dynamic size. In this way, using k-means clustering algorithm allows the use of different GA operators with the whole population and avoids the local problem minima. The effectiveness of the proposed technique is validated on a test power system available in the literature. The proposed algorithm performance is found quite satisfactory in comparison with the previously reported results. 展开更多
关键词 Unit COMMITMENT (UC) genetic algorithm (GA) K-MEANS clustering Technique
下载PDF
Discrete Variable Structural Optimization based on Multidirectional Fuzzy Genetic Algorithm 被引量:12
8
作者 LAI Yinan DAI Ye +1 位作者 BAI Xue CHEN Dongyan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期255-261,共7页
Round method is the common method for discrete variable optimization in optimal design of complex mechanical structures;however,it has some disadvantages such as poor precision,simple model and lacking of working cond... Round method is the common method for discrete variable optimization in optimal design of complex mechanical structures;however,it has some disadvantages such as poor precision,simple model and lacking of working conditions' description,etc.To solve these problems,a new model is constructed by defining parameterized fuzzy entropy,and the rationality of parameterized fuzzy entropy is verified.And a new multidirectional searching algorithm is further put forward,which takes information of actual working conditions into consideration and has a powerful local searching capability.Then this new algorithm is combined with the GA by the fuzzy clustering algorithm(FCA).With the application of FCA,the optimal solution can be effectively filtered so as to retain the diversity and the elite of the optimal solution,and avoid the structural re-analysis phenomenon between the two algorithms.The structure design of a high pressure bypass-valve body is used as an example to make a structural optimization by the proposed HGA and finite element method(FEM),respectively.The comparison result shows that the improved HGA fully considers the characteristic of discrete variable and information of working conditions,and is more suitable to the optimal problems with complex working conditions.Meanwhile,the research provides a new approach for discrete variable structure optimization problems. 展开更多
关键词 parameterized fuzzy entropy fuzzy clustering analysis multidirectional searching algorithm genetic algorithm high pressure bypass-valve
下载PDF
Improved method for the feature extraction of laser scanner using genetic clustering 被引量:6
9
作者 Yu Jinxia Cai Zixing Duan Zhuohua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期280-285,共6页
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b... Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated. 展开更多
关键词 laser scanner feature extraction weighted fuzzy clustering validation index genetic algorithm.
下载PDF
Selecting between Sequential Zoning and Simultaneous Zoning for Picker-to-parts Order Picking System Based on Order Cluster and Genetic Algorithm 被引量:2
10
作者 SHEN Changpeng WU Yaohua ZHOU Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期820-828,共9页
The existing research of sequential zoning system and simultaneous zoning system mainly focuses on some optimization problems such as workload balance,product assignment and simulation for each system separately.But t... The existing research of sequential zoning system and simultaneous zoning system mainly focuses on some optimization problems such as workload balance,product assignment and simulation for each system separately.But there is little research on comparative study between sequential zoning and simultaneous zoning.In order to help the designers to choose the suitable zoning policy for picker-to-parts system reasonably and quickly,a systemic selection method is presented.Essentially,both zoning and batching are order clustering,so the customer order sheet can be divided into many unit grids.After the time formulation in one-dimensional unit was defined,the time models for each zoning policy in two-dimensional space were established using filling curves and sequence models to link the one-dimensional unit grids.In consideration of "U" shaped dual tour into consideration,the subtraction value of order picking time between sequential zoning and simultaneous zoning was defined as the objective function to select the suitable zoning policy based on time models.As it is convergent enough,genetic algorithm is adopted to find the optimal value of order picking time.In the experimental study,5 different kinds of order/stock keeping unit(SKU) matrices with different densities d and quantities q following uniform distribution were created in order to test the suitability of sequential zoning and simultaneous zoning to different kinds of orders.After parameters setting,experimental orders inputting and iterative computations,the optimal order picking time for each zoning policy was gotten.By observing whether the delta time between them is greater than 0 or not,the suitability of zoning policies for picker-to-parts system were obtained.The significant effect of batch size b,zone number z and density d on suitability was also found by experimental study.The proposed research provides a new method for selection between sequential zoning and simultaneous zoning for picker-to-parts system,and improves the rationality and efficiency of selection process in practical design. 展开更多
关键词 selecting sequential zoning simultaneous zoning order cluster genetic algorithm picker-to-parts
下载PDF
Recognition of Spontaneous Combustion in Coal Mines Based on Genetic Clustering 被引量:6
11
作者 SUN Ji-ping SONG Shu 《Journal of China University of Mining and Technology》 EI 2006年第1期42-45,共4页
Spontaneous combustion is one of the greatest disasters in coal mines. Early recognition is important because it may be a potential inducement for other coalmine accidents. However, early recognition is difficult beca... Spontaneous combustion is one of the greatest disasters in coal mines. Early recognition is important because it may be a potential inducement for other coalmine accidents. However, early recognition is difficult because of the complexity of different coal mines. Fuzzy clustering has been proposed to incorporate the uncertainty of spontaneous combustion in coal mines and it can give a clear degree of classification of combustion. Because FCM clustering tends to become trapped in local minima, a new approach of fuzzy c-means clustering based on a genetic algorithm is there- fore proposed. Genetic algorithm is capable of locating optimal or near optimal solutions to difficult problems. It can be applied in many fields without first obtaining detailed knowledge about correlation. It is helpful in improving the effec- tiveness of fuzzy clustering in detecting spontaneous combustion. The effectiveness of the method is demonstrated by means of an experiment. 展开更多
关键词 coal mine spontaneous combustion fuzzy clustering genetic algorithm
下载PDF
Efficient Multiobjective Genetic Algorithm for Solving Transportation, Assignment, and Transshipment Problems 被引量:2
12
作者 Sayed A. Zaki Abd Allah A. Mousa +1 位作者 Hamdy M. Geneedi Adel Y. Elmekawy 《Applied Mathematics》 2012年第1期92-99,共8页
This paper presents an efficient genetic algorithm for solving multiobjective transportation problem, assignment, and transshipment Problems. The proposed approach integrates the merits of both genetic algorithm (GA) ... This paper presents an efficient genetic algorithm for solving multiobjective transportation problem, assignment, and transshipment Problems. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS) scheme. The algorithm maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on clustering algorithm. The use clustering algorithm makes the algorithms practical by allowing a decision maker to control the resolution of the Pareto set approximation. To increase GAs’ problem solution power, local search technique is implemented as neighborhood search engine where it intends to explore the less-crowded area in the current archive to possibly obtain more nondominated solutions. The inclusion of local search and clustering algorithm speeds-up the search process and also helps in obtaining a fine-grained value for the objective functions. Finally, we report numerical results in order to establish the actual computational burden of the proposed algorithm and to assess its performances with respect to classical approaches for solving MOTP. 展开更多
关键词 TRANSPORTATION Problem genetic algorithms Local Search Cluster algorithm
下载PDF
Optimizing combination of aircraft maintenance tasks by adaptive genetic algorithm based on cluster search 被引量:5
13
作者 Huaiyuan Li Hongfu Zuo +3 位作者 Kun Liang Juan Xu Jing Cai Junqiang Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期140-156,共17页
It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima... It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high. 展开更多
关键词 cluster search genetic algorithm combinatorial optimization multi-part maintenance grouping maintenance.
下载PDF
Optimization of Charging/Battery-Swap Station Location of Electric Vehicles with an Improved Genetic Algorithm-Based Model 被引量:2
14
作者 Bida Zhang Qiang Yan +1 位作者 Hairui Zhang Lin Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1177-1194,共18页
The joint location planning of charging/battery-swap facilities for electric vehicles is a complex problem.Considering the differences between these two modes of power replenishment,we constructed a joint location-pla... The joint location planning of charging/battery-swap facilities for electric vehicles is a complex problem.Considering the differences between these two modes of power replenishment,we constructed a joint location-planning model to minimize construction and operation costs,user costs,and user satisfaction-related penalty costs.We designed an improved genetic algorithm that changes the crossover rate using the fitness value,memorizes,and transfers excellent genes.In addition,the present model addresses the problem of“premature convergence”in conventional genetic algorithms.A simulated example revealed that our proposed model could provide a basis for optimized location planning of charging/battery-swapping facilities at different levels under different charging modes with an improved computing efficiency.The example also proved that meeting more demand for power supply of electric vehicles does not necessarily mean increasing the sites of charging/battery-swap stations.Instead,optimizing the level and location planning of charging/battery-swap stations can maximize the investment profit.The proposed model can provide a reference for the government and enterprises to better plan the location of charging/battery-swap facilities.Hence,it is of both theoretical and practical value. 展开更多
关键词 Charging/battery-swapping facility genetic algorithm location planning excellent gene cluster
下载PDF
Hybridization of Fuzzy and Hard Semi-Supervised Clustering Algorithms Tuned with Ant Lion Optimizer Applied to Higgs Boson Search 被引量:1
15
作者 Soukaina Mjahed Khadija Bouzaachane +2 位作者 Ahmad Taher Azar Salah El Hadaj Said Raghay 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期459-494,共36页
This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised ... This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised detection goes in this paper analysis through 4 steps:(1)selection of the most informative features from the considered data;(2)definition of the number of clusters based on the elbow criterion.The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters;(3)proposition of a new approach for hybridization of both hard and fuzzy clustering tuned with Ant Lion Optimization(ALO);(4)comparison with some existing metaheuristic optimizations such as Genetic Algorithm(GA)and Particle Swarm Optimization(PSO).By employing a multi-angle analysis based on the cluster validation indices,the confusion matrix,the efficiencies and purities rates,the average cost variation,the computational time and the Sammon mapping visualization,the results highlight the effectiveness of the improved Gustafson-Kessel algorithm optimized withALO(ALOGK)to validate the proposed approach.Even if the paper gives a complete clustering analysis,its novel contribution concerns only the Steps(1)and(3)considered above.The first contribution lies in the method used for Step(1)to select the most informative features and variables.We used the t-Statistic technique to rank them.Afterwards,a feature mapping is applied using Self-Organizing Map(SOM)to identify the level of correlation between them.Then,Particle Swarm Optimization(PSO),a metaheuristic optimization technique,is used to reduce the data set dimension.The second contribution of thiswork concern the third step,where each one of the clustering algorithms as K-means(KM),Global K-means(GlobalKM),Partitioning AroundMedoids(PAM),Fuzzy C-means(FCM),Gustafson-Kessel(GK)and Gath-Geva(GG)is optimized and tuned with ALO. 展开更多
关键词 Ant lion optimization binary clustering clustering algorithms Higgs boson feature extraction dimensionality reduction elbow criterion genetic algorithm particle swarm optimization
下载PDF
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
16
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm Kernel fuzzy C-means algorithm clustering evaluation
下载PDF
A Modified Genetic Algorithm for Product Family Optimization with Platform Specified by Information Theoretical Approach 被引量:1
17
作者 陈春宝 王丽亚 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第3期304-311,共8页
Many existing product family design methods assume a given platform, However, it is not an in-tuitive task to select the platform and unique variable within a product family. Meanwhile, most approaches are single-plat... Many existing product family design methods assume a given platform, However, it is not an in-tuitive task to select the platform and unique variable within a product family. Meanwhile, most approaches are single-platform methods, in which design variables are either shared across all product variants or not at all. While in multiple-platform design, platform variables can have special value with regard to a subset of product variants within the product family, and offer opportunities for superior overall design. An information theoretical approach incorporating fuzzy clustering and Shannon's entropy was proposed for platform variables selection in multiple-platform product family. A 2-level chromosome genetic algorithm (2LCGA) was proposed and developed for optimizing the corresponding product family in a single stage, simultaneously determining the optimal settings for the product platform and unique variables. The single-stage approach can yield im-provements in the overall performance of the product family compared with two-stage approaches, in which the first stage involves determining the best settings for the platform and values of unique variables are found for each product in the second stage. An example of design of a family of universal motors was used to verify the proposed method. 展开更多
关键词 product fainily multiple-platform genetic algorithm fuzzv clustering Shannon's entropy
下载PDF
An improved clustering analyzing algorithm for image index 被引量:2
18
作者 ZHANG Lin LI Xiao-ping ZHONG Ying 《通讯和计算机(中英文版)》 2009年第6期26-30,51,共6页
关键词 图像索引 计算机技术 聚类算法 遗传算法
下载PDF
Training Kohonen Networks by Using an Improved Genetic Algorithm
19
作者 宋爱国 陆佶人 《Journal of Southeast University(English Edition)》 EI CAS 1997年第2期39-45,共7页
TrainingKohonenNetworksbyUsinganImprovedGeneticAlgorithmSongAiguo(宋爱国)LuJiren(陆佶人)(DepartmentofRadioEnginee... TrainingKohonenNetworksbyUsinganImprovedGeneticAlgorithmSongAiguo(宋爱国)LuJiren(陆佶人)(DepartmentofRadioEngineering,SoutheastUni... 展开更多
关键词 genetic algorithm MARKOV CHAIN neural NETWORKS clustering
下载PDF
An Improved Soft Subspace Clustering Algorithm for Brain MR Image Segmentation
20
作者 Lei Ling Lijun Huang +4 位作者 Jie Wang Li Zhang Yue Wu Yizhang Jiang Kaijian Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2353-2379,共27页
In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dime... In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine. 展开更多
关键词 Soft subspace clustering image segmentation genetic algorithm generalized noise brain MR images
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部