期刊文献+
共找到4,958篇文章
< 1 2 248 >
每页显示 20 50 100
PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets
1
作者 JIANG Haipeng WU Guoqing +3 位作者 SUN Mengdan LI Feng SUN Yunfei FANG Wei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期965-975,共11页
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform... Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach. 展开更多
关键词 high utility itemset mining(HUIM) graphics process-ing unit(GPU)parallel genetic algorithm(ga) mining perfor-mance
下载PDF
New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications
2
作者 Shimaa M.Amer Ashraf A.M.Khalaf +3 位作者 Amr H.Hussein Salman A.Alqahtani Mostafa H.Dahshan Hossam M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2749-2767,共19页
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t... Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL. 展开更多
关键词 Array synthesis convolution process genetic algorithm(ga) half power beamwidth(HPBW) linear antenna array(LAA) side lobe level(SLL) quality of service(QOS)
下载PDF
基于SPA-GA-SVR模型的土壤水分及温度预测 被引量:5
3
作者 朱成杰 汪正权 《中国农村水利水电》 北大核心 2024年第1期30-36,共7页
土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测... 土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测量,所获得的高光谱数据包含大量的噪声及冗余信息,因此首先用Savitzky-Golay卷积平滑对光谱数据进行降噪处理,利用连续投影算法(Successive Projection Algorithm,SPA)提取数据特征波长,然后通过遗传算法(Genetic Algorithm,GA)对支持向量机回归(Support Vector Regression,SVR)的超参数权值和偏置进行优化,构建SPA-GASVR混合算法模型对土壤水分和温度进行预测,并与BP神经网络(Back Propagation Neural Network,BPNN)、SPA-BP、SVR、SPA-SVR、GA-SVR这5种模型的预测性能进行比较。实验结果表明:各模型在土壤湿度低于30%的情况下,表现出的预测能力差异并不显著。但整体上,复合模型相比于单一的神经网络或机器学习模型具有明显的优势,且经过连续投影算法优化的模型进一步的提高其预测能力,最终SPA-GA-SVR算法在各项指标上均优于其他模型,土壤水分预测模型的R^(2)=0.981、RMSE=0.473%,土壤温度预测模型R^(2)=0.963、RMSE=0.883℃。实验证明基于高光谱数据,经过SPA和GA优化的SVR模型能实现对土壤湿度和温度精准的预测。该方法具有一定的应用价值和现实意义,可应用于便携式高光谱仪和无人机上,实现对土壤水分和温度的实时监测,为今后的播种及灌溉提供理论参考。 展开更多
关键词 土壤水分 土壤温度 高光谱 连续投影算法(SPA) 遗传算法-支持向量机回归(ga-SVR)
下载PDF
基于GA-LSTM自适应卡尔曼滤波的路面不平度识别 被引量:1
4
作者 李韶华 李健玮 冯桂珍 《振动与冲击》 EI CSCD 北大核心 2024年第9期121-130,共10页
准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-t... 准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-term memory networks,LSTM)自适应卡尔曼滤波的路面不平度识别算法。基于2自由度车辆悬架模型,通过灰色关联法选择LSTM神经网络的特征输入变量,并采用GA优化LSTM神经网络的模型参数以准确识别路面等级,并据此实时更新卡尔曼滤波器算法中的噪声矩阵,实现了在复杂路况下对路面不平度的自适应识别。仿真和试验研究表明,所提出的基于GA-LSTM自适应卡尔曼滤波算法能够快速准确的识别路面不平度与路面等级,与传统卡尔曼滤波算法相比,相关系数、均方根误差和最大绝对误差分别提高3.11%、37.5%和51.2%,表明所提算法对复杂工况具有很好的自适应能力。 展开更多
关键词 路面不平度识别 自适应卡尔曼滤波器 ga-LSTM 灰色关联法
下载PDF
基于GA的RBF神经网络气液两相流持液率预测模型优化
5
作者 廖锐全 李龙威 +2 位作者 王伟 马斌 潘元 《长江大学学报(自然科学版)》 2024年第2期91-100,共10页
为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色... 为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色关联度分析(GRA)对收集的实验数据进行处理,优选出最优模型特征,同时结合遗传算法确定了RBF神经网络结构参数。基于室内实验数据进行训练,并与常用于持液率预测的反向传播(BP)神经网络、GA-BP神经网络及RBF神经网络进行对比,评估了模型的准确性及可行性。结果表明:GA-RBF神经网络模型均方误差为0.0017,均方根误差为0.0416,平均绝对误差为0.0281,拟合度为0.9483。相较于其他神经网络模型,该预测模型表现出更高的计算精度和更强的泛化能力。 展开更多
关键词 持液率 气液两相流 RBF神经网络 遗传算法 数据清洗
下载PDF
基于GA-BP神经网络的大型客机气流角估计方法
6
作者 张伟 张喆 +1 位作者 龚孝懿 王昕楠 《计算机仿真》 2024年第1期53-57,102,共6页
为了解决硬件冗余难以克服的气流角传感器共因故障问题,进一步提高飞机气流角信号的可靠性,研究了基于GABP神经网络的气流角估计方法。通过BP神经网络融合姿态角、加速度、风速等参数来实现不依赖气流角传感器的气流角估计;引入遗传算... 为了解决硬件冗余难以克服的气流角传感器共因故障问题,进一步提高飞机气流角信号的可靠性,研究了基于GABP神经网络的气流角估计方法。通过BP神经网络融合姿态角、加速度、风速等参数来实现不依赖气流角传感器的气流角估计;引入遗传算法对神经网络权值和阈值进行全局优化,提高估计精度;对某大型客机的试飞数据预处理后用于模型的训练和测试。仿真结果表明,训练完成的GA-BP神经网络模型对气流角的估计值贴近实际值,稳定性和精度明显高于BP神经网络。上述方法给飞机增加一个余度的气流角信号,可用于传感器故障时为飞机提供可靠的气流角信号。 展开更多
关键词 气流角估计 神经网络 遗传算法 试飞数据预处理 大型客机
下载PDF
基于改进GA算法的电力变压器优化设计
7
作者 李克讷 陈健民 +1 位作者 李武宁 陈福丁 《电工技术》 2024年第12期94-97,共4页
针对中小型电力变压器优化设计问题,同时响应国家节能减排的号召,对GA算法进行改进并分别应用到电力变压器优化设计中的有效材料成本单目标和总损耗的单目标中。将改进GA算法优化所得数据和使用原GA算法以及人工设计进行对比分析,结果... 针对中小型电力变压器优化设计问题,同时响应国家节能减排的号召,对GA算法进行改进并分别应用到电力变压器优化设计中的有效材料成本单目标和总损耗的单目标中。将改进GA算法优化所得数据和使用原GA算法以及人工设计进行对比分析,结果表明改进GA算法优化效果较好,运行时间较快,能有效减少电力变压器所需的材料成本或损耗。 展开更多
关键词 改进ga算法 电力变压器 优化设计 对比分析
下载PDF
基于GRA-GASA-SVM的煤层瓦斯含量预测方法研究 被引量:3
8
作者 田水承 任治鹏 马磊 《煤炭技术》 CAS 2024年第1期114-118,共5页
为提升煤层瓦斯含量预测精度,提出一种采用遗传模拟退火算法混合优化支持向量机(SVM)参数的瓦斯含量预测模型(GRA-GASA-SVM模型)。该模型将GA和SA整合为遗传模拟退火算法协同优化SVM的参数,以解决传统网格寻优算法取值范围无法确定和单... 为提升煤层瓦斯含量预测精度,提出一种采用遗传模拟退火算法混合优化支持向量机(SVM)参数的瓦斯含量预测模型(GRA-GASA-SVM模型)。该模型将GA和SA整合为遗传模拟退火算法协同优化SVM的参数,以解决传统网格寻优算法取值范围无法确定和单一智能算法优化程度有限等问题。利用灰色关联分析(GRA)压缩数据集维度,建立瓦斯含量预测参数体系并作为GASA-SVM的输入数据集。结果表明:SVM模型、GA-SVM模型和GASA-SVM模型10折交叉验证瓦斯含量预测总平均相对误差分别为15.98%、13.55%和10.58%。相比SVM模型和GA-SVM模型,GASA-SVM模型预测稳定性更优、预测精准度更高且对新样本泛化能力更强。 展开更多
关键词 遗传算法(ga) 模拟退火算法(SA) 支持向量机(SVM) 煤层瓦斯含量 灰色关联分析(GRA)
下载PDF
基于GA-BP神经网络的新疆南疆核桃树生长模型研究
9
作者 陈杰 《无线互联科技》 2024年第4期16-18,22,共4页
文章提出了一种利用遗传算法优化BP神经网络的核桃树生长模型来预测核桃树的树高、胸径的方法,通过优化BP神经网络的权值和阈值建立GA-BP模型,与多元线性回归模型的预测结果进行比较。结果表明:采用遗传算法优化后的模型具有更高的预测... 文章提出了一种利用遗传算法优化BP神经网络的核桃树生长模型来预测核桃树的树高、胸径的方法,通过优化BP神经网络的权值和阈值建立GA-BP模型,与多元线性回归模型的预测结果进行比较。结果表明:采用遗传算法优化后的模型具有更高的预测精度,对核桃树生长预测具有指导意义。 展开更多
关键词 遗传算法 DB神经网络 ga-BP模型 核桃树生长模型
下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
10
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection Support VECTOR machine (SVM) RECURSIVE feature ELIMINATION (RFE) genetiC algorithm (ga) Parameter SELECTION
下载PDF
基于GA-SVM算法的无线局域网络入侵信号检测方法
11
作者 王芳 《电脑与电信》 2024年第1期47-49,共3页
常规的无线局域网络入侵信号检测节点多为独立式设定,检测效率较低,导致入侵信号检测误检率较高,为此提出对基于GA-SVM算法的无线局域网络入侵信号检测方法。该方法首先采用关联的方式进行入侵信号特征提取,提升检测效率,设置关联性检... 常规的无线局域网络入侵信号检测节点多为独立式设定,检测效率较低,导致入侵信号检测误检率较高,为此提出对基于GA-SVM算法的无线局域网络入侵信号检测方法。该方法首先采用关联的方式进行入侵信号特征提取,提升检测效率,设置关联性检测节点,构建GA-SVM测算入侵信号检测模型,采用定位分离方法来实现信号检测处理。测试结果表明:针对选定的300个采样点进行信号入侵检测,对比于传统分布式光纤网络入侵信号检测组、传统FastICA测算网络入侵信号检测组,此次所设计的GA-SVM测算网络入侵信号检测组最终得出的入侵信号检测误检率被较好地控制在20%以下,说明基于GA-SVM算法的检测效果更佳,针对性更强,具有实际的应用价值。 展开更多
关键词 ga-SVM算法 无线局域网 网络入侵 信号检测 检测方法 信号感应
下载PDF
FPGA PLACEMENT OPTIMIZATION BY TWO-STEP UNIFIED GENETIC ALGORITHM AND SIMULATED ANNEALING ALGORITHM 被引量:6
12
作者 Yang Meng A.E.A. Almaini Wang Pengjun 《Journal of Electronics(China)》 2006年第4期632-636,共5页
Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it... Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool. 展开更多
关键词 genetic algorithm (ga Simulated Annealing (SA) PLACEMENT FPga EDA
下载PDF
基于FCM-GA灌溉供水管网减压阀布设优化 被引量:1
13
作者 常子峰 李红艳 +3 位作者 史文韬 张峰 崔佳丽 毛立波 《节水灌溉》 北大核心 2024年第5期38-45,共8页
为探究灌溉供水管网中存在的漏损过高以及局部压力过大的问题,提出了一种基于FCM-GA的供水管网减压阀布设优化方法,该方法借助MATLAB、EPANET、MATLAB-EPANET-Toolkit以及PlatEMO平台等工具,对西班牙的BIN管网进行分区布置减压阀并优化... 为探究灌溉供水管网中存在的漏损过高以及局部压力过大的问题,提出了一种基于FCM-GA的供水管网减压阀布设优化方法,该方法借助MATLAB、EPANET、MATLAB-EPANET-Toolkit以及PlatEMO平台等工具,对西班牙的BIN管网进行分区布置减压阀并优化阀后压力,以不同分区方案的成本与降漏效果为控制指标,筛选出最优方案。结果显示:最优方案(分5个区)将整个管网的漏损率降低至7.45%,相较初始管网降低了20.04%,降低的漏损费用可达114€/d,在减压阀服务年限内可收回成本并达到盈利,并实现对整个管网系统的压力管理,提高了管网的稳定性和可靠性,有利于减少管网事故发生。因此,基于FCM-GA的灌溉供水管网减压阀布设优化是一种安全、低成本和高效益的降漏与控压方法,在有效降低灌溉用水费用的同时,可更好地实现节水灌溉。 展开更多
关键词 灌溉供水管网 FCM-ga算法 供水管网分区 漏损控制 减压阀布设优化 压力管理
下载PDF
基于GA-PSO算法的冻土本构模型参数识别 被引量:1
14
作者 梁靖宇 张跃东 路德春 《冰川冻土》 CSCD 2024年第1期235-246,共12页
遗传算法(GA)与粒子群算法(PSO)分别具有缺乏目标导向性和易陷入局部最优的缺点,但同时分别具有全局搜索能力强与能有效传递优势信息的优点。本文以GA计算步结合精英保留策略作为PSO计算步的优势信息,避免PSO算法陷入局部最优,以PSO计... 遗传算法(GA)与粒子群算法(PSO)分别具有缺乏目标导向性和易陷入局部最优的缺点,但同时分别具有全局搜索能力强与能有效传递优势信息的优点。本文以GA计算步结合精英保留策略作为PSO计算步的优势信息,避免PSO算法陷入局部最优,以PSO计算步结合非精英优化策略作为GA计算步的导向信息,克服GA算法缺乏目标导向的问题,建立了GA-PSO新算法。其具体过程为,通过采用GA计算步对解空间进行全局搜索并对精英个体进行保留,进一步,将适应度较差的个体利用PSO计算步进行优化。基于多峰函数的验证结果表明,GA-PSO算法在解空间中具有更强的全局搜索能力,同时具有更快的收敛速度。将GA-PSO算法应用到冻土非正交弹塑性本构模型的参数识别中,通过模型的参数识别以及模型预测结果对比与验证,结果表明GA-PSO算法能够有效识别冻土非正交弹塑性本构模型的参数,提升了模型的预测效果。 展开更多
关键词 参数识别 冻土本构模型 优化算法 遗传算法(ga) 粒子群算法(PSO)
下载PDF
基于PSO-GA的分片区块链系统性能优化方法
15
作者 蒋腾聪 张建山 +1 位作者 郑鸿强 陈星 《小型微型计算机系统》 CSCD 北大核心 2024年第7期1756-1762,共7页
在这篇文章中,针对分片区块链(Sharded Blockchain)系统性能优化问题,提出了一种结合粒子群和遗传算法的系统性能优化方法(PSO-GA),目的是为了在尽可能满足当前网络环境情况下,提升其系统吞吐量.该方法考虑分片区块链中节点的计算能力... 在这篇文章中,针对分片区块链(Sharded Blockchain)系统性能优化问题,提出了一种结合粒子群和遗传算法的系统性能优化方法(PSO-GA),目的是为了在尽可能满足当前网络环境情况下,提升其系统吞吐量.该方法考虑分片区块链中节点的计算能力、恶意节点的概率以及节点之间的传输速率等不同网络环境下,找到响应网络状态的最佳分片区块链系统参数;为了避免传统粒子群优化算法陷入局部最优的问题,引入遗传算法中的交叉操作和变异操作,有效提高方法的准确性.通过大量仿真实验对方法的有效性进行验证分析.实验结果表明,相比于其他的方法,本文所提出的方法可以在更短的时间取得更高的系统吞吐量. 展开更多
关键词 分片区块链 可扩展性 粒子群算法 遗传算法
下载PDF
基于GAS算法的卵砾石粒径自动识别应用研究
16
作者 蔡豫豪 高仕赵 +1 位作者 张丛林 董晓明 《泥沙研究》 CAS CSCD 北大核心 2024年第2期9-16,共8页
粒径和级配是表征床面组成的重要指标,基于GAS粒径自动识别技术可自动识别粗粒床面粒径并生成级配曲线,能够大幅提高现场采样和分析的效率。为了验证GAS的分割效果,采用GAS提供的默认参数进行分割,同时应用ImageJ软件手动分割进行验证... 粒径和级配是表征床面组成的重要指标,基于GAS粒径自动识别技术可自动识别粗粒床面粒径并生成级配曲线,能够大幅提高现场采样和分析的效率。为了验证GAS的分割效果,采用GAS提供的默认参数进行分割,同时应用ImageJ软件手动分割进行验证。结果表明:GAS级配曲线的相对误差为5.7%,相关系数为0.992。另外,采用单参数和多参数敏感性分析法来标准化参数调整方案,gre、can1和can2对GAS提取的级配曲线和特征粒径有显著影响,其中gre起主导作用,而can1和can2控制着砾石边界的检测完整性。 展开更多
关键词 粗粒床面 级配曲线 gaS算法 数字筛分 图像处理
下载PDF
Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil 被引量:15
17
作者 Dong Xiucheng Wang Shouchun +1 位作者 Sun Renjin Zhao Suoqi 《Petroleum Science》 SCIE CAS CSCD 2010年第1期118-122,共5页
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a... Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy. 展开更多
关键词 Saturates vacuum gas oil PREDICTION artificial neural networks genetic algorithm
下载PDF
A New Image Watermarking Scheme Using Genetic Algorithm and Residual Numbers with Discrete Wavelet Transform
18
作者 Peter Awonnatemi Agbedemnab Mohammed Akolgo Moses Apambila Agebure 《Journal of Information Security》 2023年第4期422-436,共15页
Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presen... Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presents a new digital watermarking scheme that combines some operators of the Genetic Algorithm (GA) and the Residue Number (RN) System (RNS) to perform encryption on an image, which is embedded into a cover image for the purposes of watermarking. Thus, an image watermarking scheme uses an encrypted image. The secret image is embedded in decomposed frames of the cover image achieved by applying a three-level Discrete Wavelet Transform (DWT). This is to ensure that the secret information is not exposed even when there is a successful attack on the cover information. Content creators can prove ownership of the multimedia content by unveiling the secret information in a court of law. The proposed scheme was tested with sample data using MATLAB2022 and the results of the simulation show a great deal of imperceptibility and robustness as compared to similar existing schemes. 展开更多
关键词 Discrete Wavelet Transform (DWT) Digital Watermarking Encryption genetic algorithm (ga) Residue Number System (RNS) gaRN
下载PDF
基于GA/PSO BP神经网络的石家庄VOCs环境浓度预测模型研究 被引量:2
19
作者 王欣 郭婧涵 +5 位作者 耿雅娴 王树桥 葛宇轩 袁京周 张丁超 韩梦非 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1560-1568,共9页
为了提升挥发性有机物(Volatile Organic Components,VOCs)的预测精度,在反向传播(Back Propagation,BP)网络结构的基础上使用优化算法分别为遗传算法(Genetic Algorithms,GA)优化BP神经网络(GA BP)和粒子群算法(Particle Swarm Optimiz... 为了提升挥发性有机物(Volatile Organic Components,VOCs)的预测精度,在反向传播(Back Propagation,BP)网络结构的基础上使用优化算法分别为遗传算法(Genetic Algorithms,GA)优化BP神经网络(GA BP)和粒子群算法(Particle Swarm Optimization,PSO)优化BP神经网络(PSO BP)对VOCs质量浓度进行预测。首先,对污染物及气象因子进行筛选。采用相关性分析法及逐步回归法进行分析筛选,并筛选出合适的输入变量。其次,建立BP神经网络结构。利用BP、GA BP、PSO BP神经网络,以石家庄市2022年夏季污染数据为样本对VOCs质量浓度进行预测。结果显示,经相关性分析及逐步回归法筛选,将PM_(2.5)质量浓度、O_(3)质量浓度、NO_(2)质量浓度、温度、相对湿度作为输入变量。经预测结果对比,PSO BP神经网络模型的预测精度较高,烷烃、烯烃、芳香烃和含氧烃实测值与预测值之间的拟合程度(R^(2))分别为0.80、0.55、0.78、0.67。研究结果可为日后VOCs污染预报预警提供理论参考。 展开更多
关键词 环境工程学 挥发性有机物(VOCs) 神经网络 智能优化算法 遗传算法 粒子群算法
下载PDF
基于GA-GRNN的AWJ强化3D打印AlSi10Mg表面性能实验研究
20
作者 张苗苗 侯荣国 +3 位作者 吕哲 王龙庆 石广行 王中庆 《现代制造工程》 CSCD 北大核心 2024年第7期35-41,共7页
为提高磨料水射流(Abrasive Water Jet,AWJ)强化工艺对3D打印AlSi10Mg表面性能的强化效果预测的准确性及高效性,首先开展磨料水射流强化AlSi10Mg表面强化实验;然后分别以表面硬度和表面残余应力作为目标,基于遗传算法-广义回归神经网络(... 为提高磨料水射流(Abrasive Water Jet,AWJ)强化工艺对3D打印AlSi10Mg表面性能的强化效果预测的准确性及高效性,首先开展磨料水射流强化AlSi10Mg表面强化实验;然后分别以表面硬度和表面残余应力作为目标,基于遗传算法-广义回归神经网络(Genetic Algorithm-Generalized Ragression Neural Network,GA-GRNN)对实验数据样本进行训练,建立3D打印AlSi10Mg表面性能预测模型;最后,利用遗传算法对建立的神经网络预测模型中的AWJ强化主要参数进行优化。研究结果表明,经过磨料水射流强化后的AlSi10Mg表面硬度与表面残余应力均得到有效提高;建立的GA-GRNN预测模型与校验值误差在2.3%以内,具有较高的准确性;经遗传算法优化后,得到表面硬度最佳参数组合:射流压力为33 MPa,磨料粒径为0.15 mm,靶距为12.4 mm,此时表面硬度为159.25HV;表面残余应力最佳参数组合:射流压力为40 MPa,磨料粒径为0.13 mm,靶距为15 mm,此时表面残余应力为-137.4 MPa。为后续磨料水射流强化零件表面的参数选择提供数据支撑。 展开更多
关键词 磨料水射流 3D打印的AlSi10Mg 表面强化 ga-GRNN神经网络 遗传算法
下载PDF
上一页 1 2 248 下一页 到第
使用帮助 返回顶部