Association mapping(as opposed to population mapping) is becoming more important in establishing associations between a phenotype and a genotype.The major advantage of association mapping,
Due to ever-increasing concern about safety issues in using alkali metal ionic batteries, all solid-state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high-performance ASSBs lies in ...Due to ever-increasing concern about safety issues in using alkali metal ionic batteries, all solid-state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high-performance ASSBs lies in delivering ultra-fast ionic conductors that are compatible with both alkali anodes and high-voltage cathodes. Such a challenging task cannot be fulfilled, without solid understanding covering materials stability and properties, interfacial reactions, structural integrity, and electrochemical windows. Here in this work, we will review recent advances on fundamental modeling in the framework of material genome initiative based on the density functional theory (DFT), focusing on solid alkali batteries. Efforts are made in offering a dependable road chart to formulate competitive materials and construct "better" batteries.展开更多
The eukaryotic genome has a hierarchicalthree-dimensional(3D)organization with functional implications for DNA replication,DNA repair,and transcriptional regulation.Over the past decade,scientists have endeavored to e...The eukaryotic genome has a hierarchicalthree-dimensional(3D)organization with functional implications for DNA replication,DNA repair,and transcriptional regulation.Over the past decade,scientists have endeavored to elucidate the spatial characteristics and functions of plant genome architecture using high-throughput chromatin conformation capturing technologies such as Hi-C,ChlA-PET,and HiChIP.Here,we systematically review current understanding of chromatin organization in plants at multiple scales.We also discuss the emerging opinions and concepts in 3D genome research,focusing on state-of-the-art 3D genome techniques,RNA-chromatin interactions,liquid-liquid phase separation,and dynamic chromatin alterations.We propose the application of single-cell/single-molecule multi-omics,multiway(DNA-DNA,DNA-RNA,and RNA-RNA interactions)chromatin conformation capturing methods,and proximity ligation-independent 3D genome-mapping technologies to explore chromatin organization structure and function in plants.Such methods could reveal the spatial interactions between trait-related SNPs and their target genes at various spatiotemporal resolutions,and elucidate the molecular mecha-nisms of the interactions among DNA elements,RNA molecules,and protein factors during the formation of key traits in plants.展开更多
Amphioxus, also called lancelet or cephalochordate, is a promising model organism owning to its particularly evolu- tionary position, simple genome content and comparable body plan to that of vertebrates (Holland et ...Amphioxus, also called lancelet or cephalochordate, is a promising model organism owning to its particularly evolu- tionary position, simple genome content and comparable body plan to that of vertebrates (Holland et aL, 2004; Bertrand and Escriva, 2011). However, use of amphioxus as a model or- ganism has been limited for many years because of lack of an efficient genomic modification method. Recently, several revolutionary gene targeting methods that could induce directed mutations, insertions and deletions at intended target sites, have been developed (Gaj et al., 2013).展开更多
The linear genome of eukaryotes is partitioned into diverse chromatin states and packaged into a threedimensional(3D)structure,which has functional implications in DNA replication,DNA repair,and transcriptional regula...The linear genome of eukaryotes is partitioned into diverse chromatin states and packaged into a threedimensional(3D)structure,which has functional implications in DNA replication,DNA repair,and transcriptional regulation.Over the past decades,research on plant functional genomics and epigenomics has made great progress,with thousands of genes cloned and molecular mechanisms of diverse biological processes elucidated.Recently,3D genome research has gradually attracted great attention of many plant researchers.Herein,we briefly review the progress in genomic and epigenomic research in plants,with a focus on Arabidopsis and rice,and summarize the currently used technologies and advances in plant 3D genome organization studies.We also discuss the relationships between onedimensional linear genome sequences,epigenomic states,and the 3D chromatin architecture.This review provides basis for future research on plant 3D genomics.展开更多
文摘Association mapping(as opposed to population mapping) is becoming more important in establishing associations between a phenotype and a genotype.The major advantage of association mapping,
基金supported in part by the Zhengzhou Materials Genome Institute,the National Natural Science Foundation of China(No.51001091,111174256,91233101,51602094,51602290,11274100)the Fundamental Research Program from the Ministry of Science and Technology of China(no.2014CB931704)
文摘Due to ever-increasing concern about safety issues in using alkali metal ionic batteries, all solid-state batteries (ASSBs) have attracted tremendous attention. The foundation to enable high-performance ASSBs lies in delivering ultra-fast ionic conductors that are compatible with both alkali anodes and high-voltage cathodes. Such a challenging task cannot be fulfilled, without solid understanding covering materials stability and properties, interfacial reactions, structural integrity, and electrochemical windows. Here in this work, we will review recent advances on fundamental modeling in the framework of material genome initiative based on the density functional theory (DFT), focusing on solid alkali batteries. Efforts are made in offering a dependable road chart to formulate competitive materials and construct "better" batteries.
基金the National Natural Science Foundation of China(no.31771422 to X.L.,no.31771402 to G.L.)the National Key Research and Development Program of China(no.2016YFD0100904 to X.L.)the open funds of the National Key Laboratory of Crop Genetic Improvement(no.ZK201906 to X.L.).
文摘The eukaryotic genome has a hierarchicalthree-dimensional(3D)organization with functional implications for DNA replication,DNA repair,and transcriptional regulation.Over the past decade,scientists have endeavored to elucidate the spatial characteristics and functions of plant genome architecture using high-throughput chromatin conformation capturing technologies such as Hi-C,ChlA-PET,and HiChIP.Here,we systematically review current understanding of chromatin organization in plants at multiple scales.We also discuss the emerging opinions and concepts in 3D genome research,focusing on state-of-the-art 3D genome techniques,RNA-chromatin interactions,liquid-liquid phase separation,and dynamic chromatin alterations.We propose the application of single-cell/single-molecule multi-omics,multiway(DNA-DNA,DNA-RNA,and RNA-RNA interactions)chromatin conformation capturing methods,and proximity ligation-independent 3D genome-mapping technologies to explore chromatin organization structure and function in plants.Such methods could reveal the spatial interactions between trait-related SNPs and their target genes at various spatiotemporal resolutions,and elucidate the molecular mecha-nisms of the interactions among DNA elements,RNA molecules,and protein factors during the formation of key traits in plants.
基金supported by the National Natural Science Foundation of China (Nos.31071110,30830023 and 31101631)the Scientific and Technical Innovation Committee of Shenzhen,China (No.CXZZ20120614164555920)
文摘Amphioxus, also called lancelet or cephalochordate, is a promising model organism owning to its particularly evolu- tionary position, simple genome content and comparable body plan to that of vertebrates (Holland et aL, 2004; Bertrand and Escriva, 2011). However, use of amphioxus as a model or- ganism has been limited for many years because of lack of an efficient genomic modification method. Recently, several revolutionary gene targeting methods that could induce directed mutations, insertions and deletions at intended target sites, have been developed (Gaj et al., 2013).
基金supported by the National Natural Science Foundation of China(31771422)the National Key Research and Development Program of China(2016YFD0100904)the open funds of the National Key Laboratory of Crop Genetic Improvement(ZK201906)
文摘The linear genome of eukaryotes is partitioned into diverse chromatin states and packaged into a threedimensional(3D)structure,which has functional implications in DNA replication,DNA repair,and transcriptional regulation.Over the past decades,research on plant functional genomics and epigenomics has made great progress,with thousands of genes cloned and molecular mechanisms of diverse biological processes elucidated.Recently,3D genome research has gradually attracted great attention of many plant researchers.Herein,we briefly review the progress in genomic and epigenomic research in plants,with a focus on Arabidopsis and rice,and summarize the currently used technologies and advances in plant 3D genome organization studies.We also discuss the relationships between onedimensional linear genome sequences,epigenomic states,and the 3D chromatin architecture.This review provides basis for future research on plant 3D genomics.