Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,...Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,and unique immune system.Advances in evolutionary biology,supported by high-quality reference genomes and comprehensive whole-genome data,have significantly enhanced our understanding of species origins,speciation mechanisms,adaptive evolutionary processes,and phenotypic diversity.However,genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data,with only a single published genome of R.ferrumequinum currently available.In this study,we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat(R.affinis).Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae.Notably,we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway,DNA repair,and apoptosis,which displayed signs of rapid evolution.In addition,we observed an expansion of the major histocompatibility complex class II(MHC-II)region and a higher copy number of the HLA-DQB2 gene in horseshoe bats compared to other chiropteran species.Based on whole-genome resequencing and population genomic analyses,we identified multiple candidate loci(e.g.,GLI3)associated with variations in echolocation call frequency across R.affinis subspecies.This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.展开更多
This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutti...This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutting-edge fields of genomics and bioinformatics, the application of AI is propelling a deeper understanding of complex genetic mechanisms and the development of innovative therapeutic approaches. The precision of AI in genomic sequence analysis, coupled with breakthroughs in precise gene editing, such as AI-designed gene editors, significantly enhances our comprehension of gene functions and disease associations . Moreover, AI’s capabilities in disease prediction, assessing individual disease risks through genomic data analysis, provide robust support for personalized medicine. AI applications extend beyond gene identification, gene expression pattern prediction, and genomic structural variant analysis, encompassing key areas such as epigenetics, multi-omics data integration, genetic disease diagnosis, evolutionary genomics, and non-coding RNA function prediction. Despite challenges including data privacy, algorithm transparency, and bioethical issues, the future of AI is expected to continue revolutionizing genomics and bioinformatics, ushering in a new era of personalized medicine and precision treatments.展开更多
In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cas...In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cases 2023 November 6;11(31):7593-7609.Almost all living forms are able to manufacture particular chemicals-metabolites that enable them to differentiate themselves from one another and to overcome the unique obstacles they encounter in their natural habitats.Numerous methods for chemical warfare,communication,nutrition acquisition,and stress prevention are made possible by these specialized metabolites.Metabolomics is a popular technique for collecting direct mea-surements of metabolic activity from many biological systems.However,con-fusing metabolite identification is a typical issue,and biochemical interpretation is frequently constrained by imprecise and erroneous genome-based estimates of enzyme activity.Metabolite annotation and gene integration uses a biochemical reaction network to obtain a metabolite-gene association so called metabologe-nomics.This network uses an approach that emphasizes metabolite-gene consensus via biochemical processes.Combining metabolomics and genomics data is beneficial.Furthermore,computer networking proposes that using meta-bolomics data may improve annotations in sequenced species and provide testable hypotheses for specific biochemical processes.CONCLUSION The genome and metabolites of biological organisms are not fully characterized with current technologies.However,increasing high-throughput metabolomics and genomics data provide promising generation of paired data sets to understand the molecular mechanism of biochemical processes as well as determining targets for pharmaceutical drug design.Contemporary network infrastructures to integrate omics analysis can provide molecular mechanism of biochemical pathways.Furthermore,clinical data may be integrated to gene expression–metabolite expression by system genetics approach.Calculating pair-wise correlations and weighted correlation network analysis provide the basis of this integration[11-13].The occurrence of strong correlations between classified metabolites and co-expression transcripts implies either various roles of metabolites or linkages between metabolic pathways and the immune system.展开更多
Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultiv...Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultivars with enhanced traits.Several wheat genes and gene families have been characterized based on their rice orthologs.Rice–wheat orthology can identify genetic regions that regulate similar traits in both crops.Rice–wheat comparative genomics can identify candidate wheat genes in a genomic region identified by association or QTL mapping,deduce their putative functions and biochemical pathways,and develop molecular markers for marker-assisted breeding.A knowledge of gene homology facilitates the transfer between crops of genes or genomic regions associated with desirable traits by genetic engineering,gene editing,or wide crossing.展开更多
Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,...Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees.展开更多
The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alteration...The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alterations and their functional significance were unveiled in cancer cells,which led to the development of molecular targeted therapies in the 2000s and beyond.Although CGM is still a relatively new discipline and it is difficult to predict to what extent CGM will benefit the diverse pool of cancer patients,the National Cancer Center(NCC)of Japan has already contributed considerably to CGM advancement for the conquest of cancer.Looking back at these past achievements of the NCC,we predict that the future of CGM will involve the following:1)A biobank of paired cancerous and non-cancerous tissues and cells from various cancer types and stages will be developed.The quantity and quality of these samples will be compatible with omics analyses.All biobank samples will be linked to longitudinal clinical information.2)New technologies,such as whole-genome sequencing and artificial intelligence,will be introduced and new bioresources for functional and pharmacologic analyses(e.g.,a patient-derived xenograft library)will be systematically deployed.3)Fast and bidirectional translational research(bench-to-bedside and bedside-to-bench)performed by basic researchers and clinical investigators,preferably working alongside each other at the same institution,will be implemented;4)Close collaborations between academia,industry,regulatory bodies,and funding agencies will be established.5)There will be an investment in the other branch of CGM,personalized preventive medicine,based on the individual's genetic predisposition to cancer.展开更多
BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify geno...BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.展开更多
Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the w...Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the wild,but in 1999 was rediscovered.However,little is known about its genetic load.We collected 67 individuals from five wild,isolated T.sutchuenensis populations,and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T.sutchuenensis to delineate the conservation units of T.sutchuenensis,based on whole transcriptome sequencing data,as well as target capture sequencing data.We found that populations of T.sutchuenensis could be divided into three groups.These groups had low levels genetic diversity and were moderately genetically differentiated.Our findings also indicate that T.sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum.Among Thuja species,T.sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection.However,distribution of fitness effects analysis indicated a high extinction risk for T.sutchuenensis.Multiple lines of evidence identified three management units for T.sutchuenensis.Although T.sutchuenensis possesses a low genetic load,low genetic diversity,suboptimal fitness,and anthropogenic pressures all present an extinction risk for this rare conifer.This might also hold true for many endangered plant species in the mountains all over the world.展开更多
Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study...Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study,using PacBio,Illumina,10×Genomics and highthroughput chromosome conformation capture(Hi-C)sequencing technologies,a high-quality chromosome-level reference genome for J.sambac was obtained,exploiting a double-petal phenotype cultivar‘Shuangbanmoli’(JSSB).The results showed that the final assembled genome of JSSB is 580.33 Mb in size(contig N50=1.05 Mb;scaffold N50=45.07 Mb)with a total of 39618 predicted protein-coding genes.Our analyses revealed that the JSSB genome has undergone an ancient whole-genome duplication(WGD)event at 91.68 million years ago(Mya).It was estimated that J.sambac diverged from the lineage leading to Olea europaea and Osmanthus fragrans about 28.8 Mya.On the basis of a combination of genomic,transcriptomic and metabolomic analyses,a range of floral scent volatiles and genes were identified involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways.The results provide new insights into the molecular mechanism of its fragrance biosynthesis in jasmine.展开更多
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie...Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.展开更多
Roscoea is an alpine or subalpine genus from the pan-tropical family Zingiberaceae,which consists of two disjunct groups in geography,namely the"Chinese"clade and the"Himalayan"clade.Despite extens...Roscoea is an alpine or subalpine genus from the pan-tropical family Zingiberaceae,which consists of two disjunct groups in geography,namely the"Chinese"clade and the"Himalayan"clade.Despite extensive research on the genus,Roscoea species remain poorly defined and relationships between these species are not well resolved.In this study,we used plastid genomes of nine species and one variety to resolve phylogenetic relationships within the"Chinese"clade of Roscoea and as DNA super barcodes for species discrimination.We found that Roscoea plastid genomes ranged in length from 163,063 to 163,796 bp,and encoded 113 genes,including 79 protein-coding genes,30 tRNA genes,four rRNA genes.In addition,expansion and contraction of the IR regions showed obvious infraspecifc conservatism and interspecific differentiation.Plastid phylogenomics revealed that species belonging to the"Chinese"clade of Roscoea can be divided into four distinct subclades.Furthermore,our analysis supported the independence of R.cautleoides var.pubescens,the recovery of Roscoea pubescens Z.Y.Zhu,and a close relationship between R.humeana and R.cautloides.When we used the plastid genome as a super barcode,we found that it possessed strong discriminatory power(90%)with high support values.Intergenic regions provided similar resolution,which was much better than that of protein-coding regions,hypervariable regions,and DNA universal barcodes.However,plastid genomes could not completely resolve Roscoea phylogeny or definitively discriminate species.These limitations are likely related to the complex history of Roscoea speciation,poorly defined species within the genus,and the maternal inheritance of plastid genomes.展开更多
Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation,thus enabling range expansion.In contrast,narrow-range species are confined ...Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation,thus enabling range expansion.In contrast,narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions,thus limiting their ability to expand into novel environments.However,the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood.The Niviventer niviventer species complex(NNSC),consisting of highly abundant wild rats in Southeast Asia and China,offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related.In the present study,we combined ecological niche modeling with phylogenetic analysis,which suggested that sister species cannot be both widespread and dominant within the same geographical region.Moreover,by assessing heterozygosity,linkage disequilibrium decay,and Tajima's D analysis,we found that widespread species exhibited higher genetic diversity than narrow-range species.In addition,by exploring the“genomic islands of speciation”,we identified 13 genes in highly divergent regions that were shared by the two widespread species,distinguishing them from their narrow-range counterparts.Functional annotation analysis indicated that these genes are involved in nervous system development and regulation.The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.展开更多
Upper tract urothelial carcinoma and bladder urothelial carcinoma both belong to urothelial carcinoma,which is a malignant tumor occurring in the renal pelvis and ureteral urothelium.The incidence rate of UTUC is high...Upper tract urothelial carcinoma and bladder urothelial carcinoma both belong to urothelial carcinoma,which is a malignant tumor occurring in the renal pelvis and ureteral urothelium.The incidence rate of UTUC is higher among Asians and it shows various pathogenic factors.Patients of UTUC have a short lifespan,and most of them have shown invasive malignant tumors at the time of initial diagnosis.The treatment of most UTUC patients is limited to surgical resection,radiotherapy and chemotherapy in clinical.Due to its rarity,the studies on targeted therapy are rare.With the development of the targeted therapy and immunotherapy,genomics exploration that affects the prognosis of UTUC becomes particularly important.In this paper,we intend to review the differential expression,clinical significance and some special types of UTUC genomes through the UTUC genome.展开更多
Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bi...Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bio HiFi,Hi-C,and ONT(Oxford Nanopore Technologies)ultra-long sequencing technologies,annotating 43037 gene structures.Subsequently,utilizing this genome along with transcriptomic and metabolomic techniques,we explored ZH8015's response to brown planthopper(BPH)infestation.Continuous transcriptomic sampling indicated significant changes in gene expression levels around 48 h after BPH feeding.Enrichment analysis revealed particularly significant alterations in genes related to reactive oxygen species scavenging and cell wall formation.Metabolomic results demonstrated marked increases in levels of several monosaccharides,which are components of the cell wall and dramatic changes in flavonoid contents.Omics association analysis identified differentially expressed genes associated with key metabolites,shedding light on ZH8015's response to BPH infestation.In summary,this study constructed a reliable genome sequence resource for ZH8015,and the preliminary multi-omics results will guide future insect-resistant breeding research.展开更多
Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study ...Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study utilized the Illumina platform to sequence 19 plant species from 10 genera in the Rosaceae.The cp genomes,vary-ing in size from 153,366 to 159,895 bp,followed the typical quadripartite organization consisting of a large single-copy(LSC)region(84,545 to 87,883 bp),a small single-copy(SSC)region(18,174 to 19,259 bp),and a pair of inverted repeat(IR)regions(25,310 to 26,396 bp).These genomes contained 132–138 annotated genes,including 87 to 93 protein-coding genes(PCGs),37 tRNA genes,and 8 rRNA genes using MISA software,52 to 121 simple sequence repeat(SSR)loci were identified.D.arbuscular contained the least of SSRs and did not have hexanotides,A.lineata contained the richest SSRs.Long terminal repeats(LTRs)were primarily composed of palindromic and forward repeat sequences,meanwhile,The richest LTRs were found in Argentina lineata.Except for Argentina lineata,Fragariastrum eriocarpum,and Prunus trichostoma,which varied in gene type and position on both sides of the boundary,the remaining species were found to be mostly conserved according to IR boundary analysis.The examination of the Ka/Ks ratio revealed that only the infA gene had a value greater than 1,indicating that this gene was primarily subjected to positive selection during evolution.Additionally,9 hotspots of variation were identified in the LSC and SSC regions.Phylogenetic analysis confirmed the scientific validity of the genus Prunus L.sensu lato(s.l.)within the Rosaceae family.The separation of the three genera Argentina Hill,Fragariastrum Heist.ex Fabr.and Dasiphora Raf.from Potentilla L.may be a more scientific classification.These results offer fresh perspectives on the taxonomy of the Rosaceae.展开更多
Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associati...Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associating domains(TADs),and DNA loops.The identification of these hierarchical structures has benefited from the development of experimental approaches,such as 3C-based methods(Hi-C,ChIA-PET,etc.),imaging tools(2D-FISH,3D-FISH,Cryo-FISH,etc.)and ligation-free methods(GAM,SPRITE,etc.).In recent two decades,numerous studies have shown that the 3D organization of genome plays essential roles in multiple cellular processes via various mechanisms,such as regulating enhancer activity and promoter-enhancer interactions.However,there are relatively few studies about the 3D genome in livestock species.Therefore,studies for exploring the function of 3D genomes in livestock are urgently needed to provide a more comprehensive understanding of potential relationships between the genome and production traits.In this review,we summarize the recent advances of 3D genomics and its biological functions in human and mouse studies,drawing inspiration to explore the 3D genomics of livestock species.We then mainly focus on the biological functions of 3D genome organization in muscle development and its implications in animal breeding.展开更多
Background: SARS-CoV-2 has circulated worldwide with dramatic consequences. In Chad, we have no data reported of variants. The aim of this study was to identify the SARS-CoV-2 variants that circulated during the epide...Background: SARS-CoV-2 has circulated worldwide with dramatic consequences. In Chad, we have no data reported of variants. The aim of this study was to identify the SARS-CoV-2 variants that circulated during the epidemic from 2020 to 2021. Methods: This is a cross-sectional, descriptive study carried out between 2020 and 2021. Samples from patients with suspected COVID-19 were tested in five laboratories in N’Djamena. One hundred quality samples of the positives were sequenced in Kinshasa using Oxford nanopore technologies minion and the Protocol Midnight SARS-CoV2. Data were processed using Excel version 16 software. Results: Of the 100 samples sequenced, 77 (77%) produced sequences, 23 (23%) did not. The genomic profiles were wild-type Wuhan and minor mutations (19A, 19B (A), 20A (B.1, B.2), 20B (AV.1), 20D (B.1.1.1 /C.36), 20C), variant of concern Alpha (20I), variant of concern Delta (21A/J), variant of interest Eta (21D), variant of concern Omicron (21K) and unclassified variant under surveillance (B.1.640). Of these variants, the maximums were detected in patients aged 26 - 35 with 30.26% and 25.26% in 36 - 45. However, 24.67% were in travelers and 75.32% in residents, 35.06% in those vaccinated against COVID-19 and 62.33% in non-vaccinates. The estimated case-fatality rate was 2.44% (107/4374). Conclusion: This work has provided preliminary data on COVID-19 and SARS-CoV-2 variants circulating during the 2020-2021 epidemics in Chad.展开更多
Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,th...Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,the classic morphological taxonomy of this family needs to be revised.In recent years,many genera of Scenedesmaceae have been established via the use of molecular methods.The phylogenetic relationships within Scenedesmaceae were analyzed using different molecular markers and morphological data,and the new freshwater genus Coccoidesmus Wang,Hou et Liu gen.nov.was described.Two new species in this genus were also described.Phylogenetic analysis based on tufA genes revealed that the new genus formed an independent clade closely related to Comasiella.However,these two genera are characterized by significant morphological differences in colony arrangement and cell shape.The chloroplast genome of the type species was assembled and annotated,and analyses of genome structure and sequences were conducted.More genome data could help clarify the phylogenetic relationships within this family.展开更多
The rise of new viruses, like SARS-CoV-2 causing the COVID-19 outbreak, along with the return of antibiotic resistance in harmful bacteria, demands a swift and efficient reaction to safeguard the health and welfare of...The rise of new viruses, like SARS-CoV-2 causing the COVID-19 outbreak, along with the return of antibiotic resistance in harmful bacteria, demands a swift and efficient reaction to safeguard the health and welfare of the global population. It is crucial to have effective measures for prevention, intervention, and monitoring in place to address these evolving and recurring risks, ensuring public health and international security. In countries with limited resources, utilizing recombinant mutation plasmid technology in conjunction with PCR-HRM could help differentiate the existence of novel variants. cDNA synthesis was carried out on 8 nasopharyngeal samples following viral RNA extraction. The P1 segment of the SARS-CoV-2 Spike S protein was amplified via conventional PCR. Subsequently, PCR products were ligated with the pGEM-T Easy vector to generate eight recombinant SARS-CoV-2 plasmids. Clones containing mutations were sequenced using Sanger sequencing and analyzed through PCR-HRM. The P1 segment of the S gene from SARS-CoV-2 was successfully amplified, resulting in 8 recombinant plasmids generated from the 231 bp fragment. PCR-HRM analysis of these recombinant plasmids differentiated three variations within the SARS-CoV-2 plasmid population, each displaying distinct melting temperatures. Sanger sequencing identified mutations A112C, G113T, A114G, G214T, and G216C on the P1 segment, validating the PCR-HRM findings of the variations. These mutations led to the detection of L452R or L452M and F486V protein mutations within the protein sequence of the Omicron variant of SARS-CoV-2. In summary, PCR-HRM is a vital and affordable tool for distinguishing SARS-CoV-2 variants utilizing recombinant plasmids as controls.展开更多
As an important spice species in Rutaceae, the Sichuan pepper (Zanthoxylum armatum) can provide pungent and numbing taste, as well as aroma in its mature fruit. Here we assembled a chromosome-level genome of green pri...As an important spice species in Rutaceae, the Sichuan pepper (Zanthoxylum armatum) can provide pungent and numbing taste, as well as aroma in its mature fruit. Here we assembled a chromosome-level genome of green prickly ash which was widely cultivated in a major production area including Chongqing and Sichuan province, China. We generated 712 Gb (~112×) PacBio long reads and 511 Gb (~82×) Hi-C data, and yielded an assembly of 99 pseudochromosomes with total size of 5.32 Gb and contig N50 of 796 kb. The genomic analyses and cytogenetic experiments both indicated that the cultivarZhuye Huajiao’ was a triploid. We identified a Zanthoxylum-specific whole genome duplication event emerging about 24.8 million years ago (Mya). We also detected a transposition burst event (0.3-0.4 Mya) responsible for the large genome size of Z. armatum. Metabolomic analysis of the Zanthoxylum fruits during development stages revealed profiles of39 volatile aroma compounds and 528 secondary metabolites, from which six types of sanshools were identified. Based on metabolomic and transcriptomic network analysis, we screened candidate genes encoding long chain acyl-CoA synthetase, fatty acid desaturase,branched-chain amino acid aminotransferase involved in sanshool biosynthesis and three genes encoding terpene synthase during fruit development. The multi-omics data provide insights into the evolution of Zanthoxylum and molecular basis of numbing and aroma flavor of Sichuan pepper.展开更多
基金supported by the China Postdoctoral Science Foundation(2022M722020)to Z.L.Key Project of Scientific Research Program of Shaanxi Provincial Education Department(23JY020)to Z.L.+5 种基金Natural Science Basic Research Program of Shaanxi(2024JCYBMS-152)to Z.L.Key Projects of Shaanxi University of Technology(SLGKYXM2302)to Z.L.Opening Foundation of Shaanxi University of Technology(SLGPT2019KF02-02)to Z.L.Natural Science Basic Research Program of Shaanxi(2020JM-280)to G.L.Fundamental Research Funds for the Central Universities(GK201902008)to G.LNational Natural Science Foundation of China(31570378)to X.M.
文摘Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,and unique immune system.Advances in evolutionary biology,supported by high-quality reference genomes and comprehensive whole-genome data,have significantly enhanced our understanding of species origins,speciation mechanisms,adaptive evolutionary processes,and phenotypic diversity.However,genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data,with only a single published genome of R.ferrumequinum currently available.In this study,we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat(R.affinis).Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae.Notably,we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway,DNA repair,and apoptosis,which displayed signs of rapid evolution.In addition,we observed an expansion of the major histocompatibility complex class II(MHC-II)region and a higher copy number of the HLA-DQB2 gene in horseshoe bats compared to other chiropteran species.Based on whole-genome resequencing and population genomic analyses,we identified multiple candidate loci(e.g.,GLI3)associated with variations in echolocation call frequency across R.affinis subspecies.This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.
文摘This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutting-edge fields of genomics and bioinformatics, the application of AI is propelling a deeper understanding of complex genetic mechanisms and the development of innovative therapeutic approaches. The precision of AI in genomic sequence analysis, coupled with breakthroughs in precise gene editing, such as AI-designed gene editors, significantly enhances our comprehension of gene functions and disease associations . Moreover, AI’s capabilities in disease prediction, assessing individual disease risks through genomic data analysis, provide robust support for personalized medicine. AI applications extend beyond gene identification, gene expression pattern prediction, and genomic structural variant analysis, encompassing key areas such as epigenetics, multi-omics data integration, genetic disease diagnosis, evolutionary genomics, and non-coding RNA function prediction. Despite challenges including data privacy, algorithm transparency, and bioethical issues, the future of AI is expected to continue revolutionizing genomics and bioinformatics, ushering in a new era of personalized medicine and precision treatments.
文摘In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cases 2023 November 6;11(31):7593-7609.Almost all living forms are able to manufacture particular chemicals-metabolites that enable them to differentiate themselves from one another and to overcome the unique obstacles they encounter in their natural habitats.Numerous methods for chemical warfare,communication,nutrition acquisition,and stress prevention are made possible by these specialized metabolites.Metabolomics is a popular technique for collecting direct mea-surements of metabolic activity from many biological systems.However,con-fusing metabolite identification is a typical issue,and biochemical interpretation is frequently constrained by imprecise and erroneous genome-based estimates of enzyme activity.Metabolite annotation and gene integration uses a biochemical reaction network to obtain a metabolite-gene association so called metabologe-nomics.This network uses an approach that emphasizes metabolite-gene consensus via biochemical processes.Combining metabolomics and genomics data is beneficial.Furthermore,computer networking proposes that using meta-bolomics data may improve annotations in sequenced species and provide testable hypotheses for specific biochemical processes.CONCLUSION The genome and metabolites of biological organisms are not fully characterized with current technologies.However,increasing high-throughput metabolomics and genomics data provide promising generation of paired data sets to understand the molecular mechanism of biochemical processes as well as determining targets for pharmaceutical drug design.Contemporary network infrastructures to integrate omics analysis can provide molecular mechanism of biochemical pathways.Furthermore,clinical data may be integrated to gene expression–metabolite expression by system genetics approach.Calculating pair-wise correlations and weighted correlation network analysis provide the basis of this integration[11-13].The occurrence of strong correlations between classified metabolites and co-expression transcripts implies either various roles of metabolites or linkages between metabolic pathways and the immune system.
文摘Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultivars with enhanced traits.Several wheat genes and gene families have been characterized based on their rice orthologs.Rice–wheat orthology can identify genetic regions that regulate similar traits in both crops.Rice–wheat comparative genomics can identify candidate wheat genes in a genomic region identified by association or QTL mapping,deduce their putative functions and biochemical pathways,and develop molecular markers for marker-assisted breeding.A knowledge of gene homology facilitates the transfer between crops of genes or genomic regions associated with desirable traits by genetic engineering,gene editing,or wide crossing.
基金supported by the National Natural Science Foundation of China(Grant No.32101541)the National Key R&D Program of China(Grant No.2022YFD2200400).
文摘Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees.
文摘The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alterations and their functional significance were unveiled in cancer cells,which led to the development of molecular targeted therapies in the 2000s and beyond.Although CGM is still a relatively new discipline and it is difficult to predict to what extent CGM will benefit the diverse pool of cancer patients,the National Cancer Center(NCC)of Japan has already contributed considerably to CGM advancement for the conquest of cancer.Looking back at these past achievements of the NCC,we predict that the future of CGM will involve the following:1)A biobank of paired cancerous and non-cancerous tissues and cells from various cancer types and stages will be developed.The quantity and quality of these samples will be compatible with omics analyses.All biobank samples will be linked to longitudinal clinical information.2)New technologies,such as whole-genome sequencing and artificial intelligence,will be introduced and new bioresources for functional and pharmacologic analyses(e.g.,a patient-derived xenograft library)will be systematically deployed.3)Fast and bidirectional translational research(bench-to-bedside and bedside-to-bench)performed by basic researchers and clinical investigators,preferably working alongside each other at the same institution,will be implemented;4)Close collaborations between academia,industry,regulatory bodies,and funding agencies will be established.5)There will be an investment in the other branch of CGM,personalized preventive medicine,based on the individual's genetic predisposition to cancer.
文摘BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.
基金This study was financially supported by National Natural Science Foundation of China(grant No.U20A2080,31622015)the Institutional Research Fund from Sichuan University(2021SCUNL102)Fundamental Research Fund for the Central Universities of China(SCU 2021D006,SCU 2022D003).
文摘Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the wild,but in 1999 was rediscovered.However,little is known about its genetic load.We collected 67 individuals from five wild,isolated T.sutchuenensis populations,and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T.sutchuenensis to delineate the conservation units of T.sutchuenensis,based on whole transcriptome sequencing data,as well as target capture sequencing data.We found that populations of T.sutchuenensis could be divided into three groups.These groups had low levels genetic diversity and were moderately genetically differentiated.Our findings also indicate that T.sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum.Among Thuja species,T.sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection.However,distribution of fitness effects analysis indicated a high extinction risk for T.sutchuenensis.Multiple lines of evidence identified three management units for T.sutchuenensis.Although T.sutchuenensis possesses a low genetic load,low genetic diversity,suboptimal fitness,and anthropogenic pressures all present an extinction risk for this rare conifer.This might also hold true for many endangered plant species in the mountains all over the world.
基金financially supported by the National Natural Science Foundation of China(Grant No.31772338)the Basic Scientific Research Business Special Project of Jiangsu Academy of Agricultural Sciences(Grant No.0090756100ZX)。
文摘Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study,using PacBio,Illumina,10×Genomics and highthroughput chromosome conformation capture(Hi-C)sequencing technologies,a high-quality chromosome-level reference genome for J.sambac was obtained,exploiting a double-petal phenotype cultivar‘Shuangbanmoli’(JSSB).The results showed that the final assembled genome of JSSB is 580.33 Mb in size(contig N50=1.05 Mb;scaffold N50=45.07 Mb)with a total of 39618 predicted protein-coding genes.Our analyses revealed that the JSSB genome has undergone an ancient whole-genome duplication(WGD)event at 91.68 million years ago(Mya).It was estimated that J.sambac diverged from the lineage leading to Olea europaea and Osmanthus fragrans about 28.8 Mya.On the basis of a combination of genomic,transcriptomic and metabolomic analyses,a range of floral scent volatiles and genes were identified involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways.The results provide new insights into the molecular mechanism of its fragrance biosynthesis in jasmine.
基金supported by the National Natural Science Foundation of China (31970574)。
文摘Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.
基金supported by National Natural Science Foundation of China(32060091&31660081)Reserve Talents Project for Young and Middle-Aged Academic and Technical Leaders of Yunnan Province(202105AC160063)。
文摘Roscoea is an alpine or subalpine genus from the pan-tropical family Zingiberaceae,which consists of two disjunct groups in geography,namely the"Chinese"clade and the"Himalayan"clade.Despite extensive research on the genus,Roscoea species remain poorly defined and relationships between these species are not well resolved.In this study,we used plastid genomes of nine species and one variety to resolve phylogenetic relationships within the"Chinese"clade of Roscoea and as DNA super barcodes for species discrimination.We found that Roscoea plastid genomes ranged in length from 163,063 to 163,796 bp,and encoded 113 genes,including 79 protein-coding genes,30 tRNA genes,four rRNA genes.In addition,expansion and contraction of the IR regions showed obvious infraspecifc conservatism and interspecific differentiation.Plastid phylogenomics revealed that species belonging to the"Chinese"clade of Roscoea can be divided into four distinct subclades.Furthermore,our analysis supported the independence of R.cautleoides var.pubescens,the recovery of Roscoea pubescens Z.Y.Zhu,and a close relationship between R.humeana and R.cautloides.When we used the plastid genome as a super barcode,we found that it possessed strong discriminatory power(90%)with high support values.Intergenic regions provided similar resolution,which was much better than that of protein-coding regions,hypervariable regions,and DNA universal barcodes.However,plastid genomes could not completely resolve Roscoea phylogeny or definitively discriminate species.These limitations are likely related to the complex history of Roscoea speciation,poorly defined species within the genus,and the maternal inheritance of plastid genomes.
基金supported by the Guangdong Provincial Key R&D Program (2022B1111040001)the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0402/2019QZKK0501)National Natural Science Foundation of China (32170426)。
文摘Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation,thus enabling range expansion.In contrast,narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions,thus limiting their ability to expand into novel environments.However,the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood.The Niviventer niviventer species complex(NNSC),consisting of highly abundant wild rats in Southeast Asia and China,offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related.In the present study,we combined ecological niche modeling with phylogenetic analysis,which suggested that sister species cannot be both widespread and dominant within the same geographical region.Moreover,by assessing heterozygosity,linkage disequilibrium decay,and Tajima's D analysis,we found that widespread species exhibited higher genetic diversity than narrow-range species.In addition,by exploring the“genomic islands of speciation”,we identified 13 genes in highly divergent regions that were shared by the two widespread species,distinguishing them from their narrow-range counterparts.Functional annotation analysis indicated that these genes are involved in nervous system development and regulation.The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.
基金National Natural Science Foundation of China (82060461)Hainan Provincial Nature Foundation Innovation Research Team Project (820CXTD447)。
文摘Upper tract urothelial carcinoma and bladder urothelial carcinoma both belong to urothelial carcinoma,which is a malignant tumor occurring in the renal pelvis and ureteral urothelium.The incidence rate of UTUC is higher among Asians and it shows various pathogenic factors.Patients of UTUC have a short lifespan,and most of them have shown invasive malignant tumors at the time of initial diagnosis.The treatment of most UTUC patients is limited to surgical resection,radiotherapy and chemotherapy in clinical.Due to its rarity,the studies on targeted therapy are rare.With the development of the targeted therapy and immunotherapy,genomics exploration that affects the prognosis of UTUC becomes particularly important.In this paper,we intend to review the differential expression,clinical significance and some special types of UTUC genomes through the UTUC genome.
基金supported by the Chinese Academy of Agricultural Sciences Innovation Project(Grant No.CAASASTIP-2013CNRRI)Fundamental Research Funds for Central Public Welfare Research Institutes of Chinese Rice Research Institute(Grant No.CPSIBRF-CNRRI-202102)。
文摘Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bio HiFi,Hi-C,and ONT(Oxford Nanopore Technologies)ultra-long sequencing technologies,annotating 43037 gene structures.Subsequently,utilizing this genome along with transcriptomic and metabolomic techniques,we explored ZH8015's response to brown planthopper(BPH)infestation.Continuous transcriptomic sampling indicated significant changes in gene expression levels around 48 h after BPH feeding.Enrichment analysis revealed particularly significant alterations in genes related to reactive oxygen species scavenging and cell wall formation.Metabolomic results demonstrated marked increases in levels of several monosaccharides,which are components of the cell wall and dramatic changes in flavonoid contents.Omics association analysis identified differentially expressed genes associated with key metabolites,shedding light on ZH8015's response to BPH infestation.In summary,this study constructed a reliable genome sequence resource for ZH8015,and the preliminary multi-omics results will guide future insect-resistant breeding research.
基金funded by the Jiangxi Provincial Natural Science Foundation,Grant Number 20232BAB216119.
文摘Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study utilized the Illumina platform to sequence 19 plant species from 10 genera in the Rosaceae.The cp genomes,vary-ing in size from 153,366 to 159,895 bp,followed the typical quadripartite organization consisting of a large single-copy(LSC)region(84,545 to 87,883 bp),a small single-copy(SSC)region(18,174 to 19,259 bp),and a pair of inverted repeat(IR)regions(25,310 to 26,396 bp).These genomes contained 132–138 annotated genes,including 87 to 93 protein-coding genes(PCGs),37 tRNA genes,and 8 rRNA genes using MISA software,52 to 121 simple sequence repeat(SSR)loci were identified.D.arbuscular contained the least of SSRs and did not have hexanotides,A.lineata contained the richest SSRs.Long terminal repeats(LTRs)were primarily composed of palindromic and forward repeat sequences,meanwhile,The richest LTRs were found in Argentina lineata.Except for Argentina lineata,Fragariastrum eriocarpum,and Prunus trichostoma,which varied in gene type and position on both sides of the boundary,the remaining species were found to be mostly conserved according to IR boundary analysis.The examination of the Ka/Ks ratio revealed that only the infA gene had a value greater than 1,indicating that this gene was primarily subjected to positive selection during evolution.Additionally,9 hotspots of variation were identified in the LSC and SSC regions.Phylogenetic analysis confirmed the scientific validity of the genus Prunus L.sensu lato(s.l.)within the Rosaceae family.The separation of the three genera Argentina Hill,Fragariastrum Heist.ex Fabr.and Dasiphora Raf.from Potentilla L.may be a more scientific classification.These results offer fresh perspectives on the taxonomy of the Rosaceae.
基金supported by the National Natural Science Foundation of China(31972558)the Agricultural Improved Seed Project of Shandong Province,China(2020LZGC014)。
文摘Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associating domains(TADs),and DNA loops.The identification of these hierarchical structures has benefited from the development of experimental approaches,such as 3C-based methods(Hi-C,ChIA-PET,etc.),imaging tools(2D-FISH,3D-FISH,Cryo-FISH,etc.)and ligation-free methods(GAM,SPRITE,etc.).In recent two decades,numerous studies have shown that the 3D organization of genome plays essential roles in multiple cellular processes via various mechanisms,such as regulating enhancer activity and promoter-enhancer interactions.However,there are relatively few studies about the 3D genome in livestock species.Therefore,studies for exploring the function of 3D genomes in livestock are urgently needed to provide a more comprehensive understanding of potential relationships between the genome and production traits.In this review,we summarize the recent advances of 3D genomics and its biological functions in human and mouse studies,drawing inspiration to explore the 3D genomics of livestock species.We then mainly focus on the biological functions of 3D genome organization in muscle development and its implications in animal breeding.
文摘Background: SARS-CoV-2 has circulated worldwide with dramatic consequences. In Chad, we have no data reported of variants. The aim of this study was to identify the SARS-CoV-2 variants that circulated during the epidemic from 2020 to 2021. Methods: This is a cross-sectional, descriptive study carried out between 2020 and 2021. Samples from patients with suspected COVID-19 were tested in five laboratories in N’Djamena. One hundred quality samples of the positives were sequenced in Kinshasa using Oxford nanopore technologies minion and the Protocol Midnight SARS-CoV2. Data were processed using Excel version 16 software. Results: Of the 100 samples sequenced, 77 (77%) produced sequences, 23 (23%) did not. The genomic profiles were wild-type Wuhan and minor mutations (19A, 19B (A), 20A (B.1, B.2), 20B (AV.1), 20D (B.1.1.1 /C.36), 20C), variant of concern Alpha (20I), variant of concern Delta (21A/J), variant of interest Eta (21D), variant of concern Omicron (21K) and unclassified variant under surveillance (B.1.640). Of these variants, the maximums were detected in patients aged 26 - 35 with 30.26% and 25.26% in 36 - 45. However, 24.67% were in travelers and 75.32% in residents, 35.06% in those vaccinated against COVID-19 and 62.33% in non-vaccinates. The estimated case-fatality rate was 2.44% (107/4374). Conclusion: This work has provided preliminary data on COVID-19 and SARS-CoV-2 variants circulating during the 2020-2021 epidemics in Chad.
基金Supported by the National Natural Science Foundation of China(Nos.32000167,32370219)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2020L0524)+1 种基金the Fundamental Research Program of Shanxi Province(No.20210302124302)the Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin,Taiyuan Normal University。
文摘Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,the classic morphological taxonomy of this family needs to be revised.In recent years,many genera of Scenedesmaceae have been established via the use of molecular methods.The phylogenetic relationships within Scenedesmaceae were analyzed using different molecular markers and morphological data,and the new freshwater genus Coccoidesmus Wang,Hou et Liu gen.nov.was described.Two new species in this genus were also described.Phylogenetic analysis based on tufA genes revealed that the new genus formed an independent clade closely related to Comasiella.However,these two genera are characterized by significant morphological differences in colony arrangement and cell shape.The chloroplast genome of the type species was assembled and annotated,and analyses of genome structure and sequences were conducted.More genome data could help clarify the phylogenetic relationships within this family.
文摘The rise of new viruses, like SARS-CoV-2 causing the COVID-19 outbreak, along with the return of antibiotic resistance in harmful bacteria, demands a swift and efficient reaction to safeguard the health and welfare of the global population. It is crucial to have effective measures for prevention, intervention, and monitoring in place to address these evolving and recurring risks, ensuring public health and international security. In countries with limited resources, utilizing recombinant mutation plasmid technology in conjunction with PCR-HRM could help differentiate the existence of novel variants. cDNA synthesis was carried out on 8 nasopharyngeal samples following viral RNA extraction. The P1 segment of the SARS-CoV-2 Spike S protein was amplified via conventional PCR. Subsequently, PCR products were ligated with the pGEM-T Easy vector to generate eight recombinant SARS-CoV-2 plasmids. Clones containing mutations were sequenced using Sanger sequencing and analyzed through PCR-HRM. The P1 segment of the S gene from SARS-CoV-2 was successfully amplified, resulting in 8 recombinant plasmids generated from the 231 bp fragment. PCR-HRM analysis of these recombinant plasmids differentiated three variations within the SARS-CoV-2 plasmid population, each displaying distinct melting temperatures. Sanger sequencing identified mutations A112C, G113T, A114G, G214T, and G216C on the P1 segment, validating the PCR-HRM findings of the variations. These mutations led to the detection of L452R or L452M and F486V protein mutations within the protein sequence of the Omicron variant of SARS-CoV-2. In summary, PCR-HRM is a vital and affordable tool for distinguishing SARS-CoV-2 variants utilizing recombinant plasmids as controls.
基金supported by the Projects for Innovative Research Groups of Chongqing Universities (Grant No.CXQT21028)Chongqing talent program for Zexiong Chen+2 种基金Scientific Technological Research Program of Chongqing Municipal Education Commission (Grant No.KJZD-K201901303)National Natural Science Foundation of China (Grant No.31925034)National Key Research and Development Project (Grant No.2019YFD1001200)。
文摘As an important spice species in Rutaceae, the Sichuan pepper (Zanthoxylum armatum) can provide pungent and numbing taste, as well as aroma in its mature fruit. Here we assembled a chromosome-level genome of green prickly ash which was widely cultivated in a major production area including Chongqing and Sichuan province, China. We generated 712 Gb (~112×) PacBio long reads and 511 Gb (~82×) Hi-C data, and yielded an assembly of 99 pseudochromosomes with total size of 5.32 Gb and contig N50 of 796 kb. The genomic analyses and cytogenetic experiments both indicated that the cultivarZhuye Huajiao’ was a triploid. We identified a Zanthoxylum-specific whole genome duplication event emerging about 24.8 million years ago (Mya). We also detected a transposition burst event (0.3-0.4 Mya) responsible for the large genome size of Z. armatum. Metabolomic analysis of the Zanthoxylum fruits during development stages revealed profiles of39 volatile aroma compounds and 528 secondary metabolites, from which six types of sanshools were identified. Based on metabolomic and transcriptomic network analysis, we screened candidate genes encoding long chain acyl-CoA synthetase, fatty acid desaturase,branched-chain amino acid aminotransferase involved in sanshool biosynthesis and three genes encoding terpene synthase during fruit development. The multi-omics data provide insights into the evolution of Zanthoxylum and molecular basis of numbing and aroma flavor of Sichuan pepper.