The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ...The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.展开更多
Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas con...Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams.展开更多
Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this...Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams.展开更多
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t...In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.展开更多
Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings ...Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams.展开更多
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni...In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.展开更多
Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fr...Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fracturing stimulation. Laboratory hydraulic fracturing experiments were conducted on coal blocks under true tri-axial stress to simulate fracturing stimulation of coal seams. Fractures were initiated by injecting a water gel with luminous yellow fluorescent dye into an open hole section of a wellbore. The impact of cleats on initiation and propagation of hydraulic fractures in coal seams is discussed. Three types of hydraulic fracture initiation and propagation pattern were observed in this study: 1) The hydraulic fracture initiated and then grew along the cleat. 2) The hydraulic fracture initiated along a butt cleat or a fracture (natural or induced by drilling) oriented roughly in the minimum horizontal stress direction, then turned to propagate along the first face cleat that it encountered or gradually turned towards the maximum horizontal stress direction. 3) The hydraulic fracture initiated perpendicular to the minimum stress and, when it encountered a face cleat, tended to propagate along the cleats if the extension direction does not deviate greatly (〈20° as determined in this paper) from the maximum horizontal stress direction. When a coal seam is hydraulically fractured, the resulting fracture network is controlled by the combined effect of several factors: cleats determine the initiation and extension path of the fracture, the in-situ stress state dominates the main direction of the fracture zone and bedding planes impede fracture height growth.展开更多
Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extreme...Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extremely thick coal seams because the control mechanism of the system for the deformation of the roof and the separation between coal rock segments is not completely understood. By using the relationship between the support system and the roof strata, a mechanical model was established to calculate the deformation of the roof in a thick coal seam with bedding separation under different support conditions: with an anchor truss support and without support. On this basis, the research was used to deduce a method for computing the minimum pre-tightening forces in the anchor truss, the maximum amounts of subsidence and separation with, and without, anchor truss support under the roof, and the maximum subsidence and the decreasing amounts of the separation before and after adopting the anchor truss. Additionally, mechanical relationships between the minimum pre-tightening force and the anchoring force in the anchor were analyzed. By taking a typical roadway with thick coal roof as an example, the theoretical results mentioned above were applied in the analysis and testing of a roof supporting project in a roadway field to verify the accuracy of the theory: favorable experimental results were achieved. In addition, the relationships among other parameters were analyzed, including the minimum pre-tightening forces applied by the anchor truss, the angle of inclination of the anchor cable, and the array pitch. Meanwhile, the changing characteristics of the amounts of roof separation and subsidence with key parameters of the support system(such as array pitch, pre-tightening force, and inclination angle) were also analyzed. The research results revealed the acting mechanism of the anchor truss in control of roadway stability with a thick coal seam, providing a theoretical basis of its application in coal mining.展开更多
Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-co...Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method.展开更多
In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining st...In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.展开更多
A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical ...A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical model under the influence of ground stress, gas pressure, and mining depth is established and simulated by using COMSOL Multiphysics software. Research results indicate that under the influence of factors such as high ground stress and gas pressure, the mutual coupling interaction between coal and gas is much more significant, which leads to the emergence of new characteristics of gas compound dynamic disasters. Reducing the ground stress concentration in front of the working face can not only minimize the possibility of rock burst accidents, which are mainly caused by ground stress, but also can weaken the role of ground stress as a barrier to gas, thereby decreasing the number of outburst accidents whose dominant factor is gas. The results have a great theoretical and practical significance in terms of accident prevention, enhanced mine safety, disaster prevention system design, and improved accident emergency plans.展开更多
Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recov...Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.展开更多
This paper provides an improved understanding of the movement mechanisms of both bed-rock gully and sandy soil gully when underground mining occurs underneath,followed by systematic analysis of the contributing factor...This paper provides an improved understanding of the movement mechanisms of both bed-rock gully and sandy soil gully when underground mining occurs underneath,followed by systematic analysis of the contributing factors such as mining advance direction,gully slope angle,gully erosion coefficient and mining height.This paper presents the results from monitoring,theoretical analyses and up to date modeling based on the geological features in the gully affected area,and the implications of these results to the success of roof support trial.It was observed that when mining occurred towards the gully,sliding of slope block along the fracture surface occurred,which resulted in unstable roof condition;when mining progressed away from the gully,polygon blocks developed in the gully slope and rotated in reversed direction forming hinged structure;within the bed-rock slope,the hinged structure was unstable due to shear failure of the polygon block;however,within the sandy soil slope,the structure was relatively stable due to the gradual rotating and subsiding of the polygon block.The increase of the value of slope angle and mining height lead to a faster and more intensive fracture development within the gully slope,which had a pronounced effect on gully slope stability and underground pressure.Various remediation approaches are hence proposed in this paper including introducing more powerful support and reasonable mining height,setting up working face along or away from gullies,using room and pillar,strip mining and backfill instead of longwall mining.展开更多
The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on t...The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.展开更多
In the past two decades,research on C_(2)storage in coal seams and simultaneously enhanced coalbed methane recovery(ECBM)has attracted a lot of attention due to its win–win effect between greenhouse gas(C_(2))emissio...In the past two decades,research on C_(2)storage in coal seams and simultaneously enhanced coalbed methane recovery(ECBM)has attracted a lot of attention due to its win–win effect between greenhouse gas(C_(2))emission reduction and coalbed methane recovery enhancement.This paper presents an overview on the current status of research on C_(2)-ECBM in the past two decades,which involves C_(2)storage capacity evaluations,laboratory investigations,modelings and pilot tests.The current status shows that we have made great progress in the ECBM technology study,especially in the understanding of the ECBM mechanisms.However,there still have many technical challenges,such as the definition of unmineable coal seams for C_(2)storage capacity evaluation and storage site characterization,methods for C_(2)injectivity enhancement,etc.The low injectivity of coal seams and injectivity loss with C_(2)injection are the major technique challenges of ECBM.We also search several ways to promote the advancement of ECBM technology in the present stage,such as integrating ECBM with hydraulic fracturing,using a gas mixture instead of pure C_(2)for injection into coal seams and the application of ECBM to underground coal mines.展开更多
When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stra...When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.展开更多
Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditi...Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.展开更多
基金supported by Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)National Natural Science Foundation of China (Nos.51904203 and 52174125)+4 种基金the China Postdoctoral Science Foundation (No.2021M702049)the Tencent Foundation or XPLORER PRIZEShanxi Science and Technology Major Project Funds (No.20201102004)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No.2021SX-TD001)Open Fund Research Project Supported by State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology (No.SICGM202209)。
文摘The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.
基金supported by the National Natural Science Foundation of China(52074013,52374179)China Huaneng Group Science and Technology Project(HNKJ20-H87)+1 种基金Natural Science Foundation of Anhui Province(2208085ME125)Hefei Comprehensive National Science Center(21KZS216),which are gratefully appreciated.
文摘Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams.
基金The research was conducted as part of the“Establishing a Research Observatory to Unlock European Coal Seams for CO_(2) Storage(ROCCS)”project(Grant No.899336)The work of the second author is also sponsored by Shanghai Pujiang Program(Grant No.23PJ1412600)。
文摘Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams.
基金financially supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Outstanding Ph.D Dissertation Cultivating Program of Xi’an University of Science and Technology(No.PY22001)the National Foundation for studying abroad(No.[2022]87)。
文摘In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.
基金National Natural Science Foundation of China(11672333).
文摘Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams.
文摘In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.
基金support from the National Natural Science Foundation of China (Grant Nos. 51274216 and 51322404)
文摘Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fracturing stimulation. Laboratory hydraulic fracturing experiments were conducted on coal blocks under true tri-axial stress to simulate fracturing stimulation of coal seams. Fractures were initiated by injecting a water gel with luminous yellow fluorescent dye into an open hole section of a wellbore. The impact of cleats on initiation and propagation of hydraulic fractures in coal seams is discussed. Three types of hydraulic fracture initiation and propagation pattern were observed in this study: 1) The hydraulic fracture initiated and then grew along the cleat. 2) The hydraulic fracture initiated along a butt cleat or a fracture (natural or induced by drilling) oriented roughly in the minimum horizontal stress direction, then turned to propagate along the first face cleat that it encountered or gradually turned towards the maximum horizontal stress direction. 3) The hydraulic fracture initiated perpendicular to the minimum stress and, when it encountered a face cleat, tended to propagate along the cleats if the extension direction does not deviate greatly (〈20° as determined in this paper) from the maximum horizontal stress direction. When a coal seam is hydraulically fractured, the resulting fracture network is controlled by the combined effect of several factors: cleats determine the initiation and extension path of the fracture, the in-situ stress state dominates the main direction of the fracture zone and bedding planes impede fracture height growth.
基金Project(51404248)supported by the National Natural Science Foundation of the Youth Science Foundation of ChinaProject(2017XKQY012)supported by Fundamental Research Funds for the Central Universities of ChinaProject(2014M551702)supported by the China Postdoctoral Science Foundation
文摘Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extremely thick coal seams because the control mechanism of the system for the deformation of the roof and the separation between coal rock segments is not completely understood. By using the relationship between the support system and the roof strata, a mechanical model was established to calculate the deformation of the roof in a thick coal seam with bedding separation under different support conditions: with an anchor truss support and without support. On this basis, the research was used to deduce a method for computing the minimum pre-tightening forces in the anchor truss, the maximum amounts of subsidence and separation with, and without, anchor truss support under the roof, and the maximum subsidence and the decreasing amounts of the separation before and after adopting the anchor truss. Additionally, mechanical relationships between the minimum pre-tightening force and the anchoring force in the anchor were analyzed. By taking a typical roadway with thick coal roof as an example, the theoretical results mentioned above were applied in the analysis and testing of a roof supporting project in a roadway field to verify the accuracy of the theory: favorable experimental results were achieved. In addition, the relationships among other parameters were analyzed, including the minimum pre-tightening forces applied by the anchor truss, the angle of inclination of the anchor cable, and the array pitch. Meanwhile, the changing characteristics of the amounts of roof separation and subsidence with key parameters of the support system(such as array pitch, pre-tightening force, and inclination angle) were also analyzed. The research results revealed the acting mechanism of the anchor truss in control of roadway stability with a thick coal seam, providing a theoretical basis of its application in coal mining.
基金supported by the Special Funding Projects of“Sanjin Scholars”Supporting Plan(Grant No.2050205)
文摘Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method.
基金Project(51104176)supported by the National Natural Science Foundation of China
文摘In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.
基金financially supported by the State Key Research Development Program of China (Nos. 2016YFC0801402, 2016YFC0600708)the National Natural Science Foundation of China (Nos. 51474219, 51304213)
文摘A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical model under the influence of ground stress, gas pressure, and mining depth is established and simulated by using COMSOL Multiphysics software. Research results indicate that under the influence of factors such as high ground stress and gas pressure, the mutual coupling interaction between coal and gas is much more significant, which leads to the emergence of new characteristics of gas compound dynamic disasters. Reducing the ground stress concentration in front of the working face can not only minimize the possibility of rock burst accidents, which are mainly caused by ground stress, but also can weaken the role of ground stress as a barrier to gas, thereby decreasing the number of outburst accidents whose dominant factor is gas. The results have a great theoretical and practical significance in terms of accident prevention, enhanced mine safety, disaster prevention system design, and improved accident emergency plans.
文摘Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.
基金provided by the National Natural Science Foundation of China (Grant No.51004101,No.51264035)the Science Foundation for Young Scholars of China University of Mining &Technology (Grant No.2009A001)+1 种基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Fundamental Research Funds for the Central Universities (2012QNA35)
文摘This paper provides an improved understanding of the movement mechanisms of both bed-rock gully and sandy soil gully when underground mining occurs underneath,followed by systematic analysis of the contributing factors such as mining advance direction,gully slope angle,gully erosion coefficient and mining height.This paper presents the results from monitoring,theoretical analyses and up to date modeling based on the geological features in the gully affected area,and the implications of these results to the success of roof support trial.It was observed that when mining occurred towards the gully,sliding of slope block along the fracture surface occurred,which resulted in unstable roof condition;when mining progressed away from the gully,polygon blocks developed in the gully slope and rotated in reversed direction forming hinged structure;within the bed-rock slope,the hinged structure was unstable due to shear failure of the polygon block;however,within the sandy soil slope,the structure was relatively stable due to the gradual rotating and subsiding of the polygon block.The increase of the value of slope angle and mining height lead to a faster and more intensive fracture development within the gully slope,which had a pronounced effect on gully slope stability and underground pressure.Various remediation approaches are hence proposed in this paper including introducing more powerful support and reasonable mining height,setting up working face along or away from gullies,using room and pillar,strip mining and backfill instead of longwall mining.
基金provided by the National Natural Science Foundation of China(No.90510002)the Science and Technology Research of the Ministry of Education of China(No.306008)
文摘The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.
基金Supported by the National Natural Science Foundation of China(51104143).
文摘In the past two decades,research on C_(2)storage in coal seams and simultaneously enhanced coalbed methane recovery(ECBM)has attracted a lot of attention due to its win–win effect between greenhouse gas(C_(2))emission reduction and coalbed methane recovery enhancement.This paper presents an overview on the current status of research on C_(2)-ECBM in the past two decades,which involves C_(2)storage capacity evaluations,laboratory investigations,modelings and pilot tests.The current status shows that we have made great progress in the ECBM technology study,especially in the understanding of the ECBM mechanisms.However,there still have many technical challenges,such as the definition of unmineable coal seams for C_(2)storage capacity evaluation and storage site characterization,methods for C_(2)injectivity enhancement,etc.The low injectivity of coal seams and injectivity loss with C_(2)injection are the major technique challenges of ECBM.We also search several ways to promote the advancement of ECBM technology in the present stage,such as integrating ECBM with hydraulic fracturing,using a gas mixture instead of pure C_(2)for injection into coal seams and the application of ECBM to underground coal mines.
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth 5-Year Key Scientific and Technological Project
文摘When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.
文摘Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.