The socio-economic attribute of geo-hazard made us distinguish it from the traditional engineering geology study. It will get more social benefit from the analysis of the geo-hazard in the socio-economic attribute. Th...The socio-economic attribute of geo-hazard made us distinguish it from the traditional engineering geology study. It will get more social benefit from the analysis of the geo-hazard in the socio-economic attribute. The hazard and the vulnerability of the element controls the risk level of the regional geo-hazard. The risk analysis supported by GIS in geo-hazard study is one of the most important directions. Based on the author’s studies in recent years, a risk analysis system of regional geo-hazard (RiskAnly) has been developed on the basis of software MAPGIS. The paper introduces the train of system design, the structure and the workflow of RiskAnly. As a case study, the paper also deals with the risk zonation of the regional landslide hazard of China.展开更多
In conventional susceptibility evaluation of geo-hazards,there are some limits,such as unreasonable division of evaluated region,difficulty in quantifying evaluation indicators,time-consuming calculation.To address th...In conventional susceptibility evaluation of geo-hazards,there are some limits,such as unreasonable division of evaluated region,difficulty in quantifying evaluation indicators,time-consuming calculation.To address these problems,we try to employ the software ArcGIS to evaluate geo-hazards susceptibility.The study area of Yaozhou County is automatically divided into 3562 units.Based on the spatial overlay analysis function of ArcGIS,quantitative evaluation of geo-hazards susceptibility is implemented in the study area,and the geo-hazards susceptibility zoning is mapped.It is observed that the evaluation results match well with field investigations.展开更多
The Kinta Valley is an area of karst in the north-western part of Peninsular Malaysia. Over 30 years of uncontrolled land use and development has led to significant changes in topography and geomorphology, such as the...The Kinta Valley is an area of karst in the north-western part of Peninsular Malaysia. Over 30 years of uncontrolled land use and development has led to significant changes in topography and geomorphology, such as the appearance of sinkholes. In this paper, geospatial techniques were utilized to the task of evaluating sinkholes susceptibility map using a spatial multi criteria evaluation approach (SMCE). Sinkhole location and a spatial database were applied to calculate eight inherent causative factors for limestone instability namely: lithology, structure (lineament), soil cover, slope, land use mining, urban area features, ponds and rivers. The preparation of the sinkhole geohazard map involved summing the weighted values for each hazard element, which permits the construction of geohazard model;the results of the analysis were validated using the previous actual sinkholes locations in the study area. The spatial distribution of sinkholes occurrence, urban development, faults distribution and ex-mining ponds are factors that are directly responsible for all sinkholes subsidence hazards. Further, the resulting geo-hazard map shows that 93% of recent sinkholes occur in areas where the model flags as “high” and “very high” potential hazard, located in the urbanized part of the valley, while less-developed areas to the west and southwest suffered less sinkhole development. The results can be used for hazard prevention and land-use planning.展开更多
Nabq protectorate is one of wonderful natural places in Egypt. It is characterized by diversity of bio-lives such as mangrove forests, coral colonies, wild life plants and migratory birds. Ongoing growth of tourism in...Nabq protectorate is one of wonderful natural places in Egypt. It is characterized by diversity of bio-lives such as mangrove forests, coral colonies, wild life plants and migratory birds. Ongoing growth of tourism industries at Sharm El Sheikh northward into the Nabq protectorate causes severe hazards on its natural resources. The aim of the present study is to assess the present geo-environmental hazards in the Nabq protectorate. Assessment includes the analysis of satellite images, topographical, geological and other ancillary geological data using GIS technology. GIS data analyses indicate that the area is under threat from some of geo-hazards. Rough topography and mass wasting with high probability of flash flooding threaten different constructions in this area. The mobilization of coastal sand dunes, wave action and tidal currents are natural impacts on Nabq ecosystems, where moved dunes leave clay soils that are removed in some places by tropical storms increasing sea water turbidity that threaten the corals and other living organisms in the tidal flat region. The seismic activity hazard in the study area is usually active on lineaments extending parallel to the trend of the Gulf of Aqaba-Dead Sea transform fault where the Nabq protectorate occupies its southern segment. Unwise planning activities destroy the natural environmental resources in Nabq area by construction of new resorts on mangrove forests, coral colonies and raised beaches. Hazard assessment identifies land suitability and land use maps that are clearly exhibit models of traditional dams and buffer strips on coastal zone and highways as well as around the Bedouin communities which are worked on tourism and fishing. These maps are urgent in need of an assessment and rehabilitation program to mitigate geo-hazard.展开更多
针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了...针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、岩性和土地利用9类评价因子,运用AIFFC及自然断点法(natural breakpoint classification,NBC)对连续型因子进行分级,并分别代入加权信息量模型和随机森林模型,获取研究区易发性区划图。采用单因子分级结果精度、灾积比分析和易发性分区结果对AIFFC分级法的优越性进行检验,结果表明:各因子采用AIFFC算法分级的AUC值均高于自然断点法;基于AIFFC的随机森林模型及加权信息量模型的高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提升了7.6%、2.7%。采用AIFFC分级方法优化了地质灾害易发性评价因子分级,显著提高了地质灾害易发性评价的合理性。展开更多
基金National Natural Science Foundation of China, No. 40072084
文摘The socio-economic attribute of geo-hazard made us distinguish it from the traditional engineering geology study. It will get more social benefit from the analysis of the geo-hazard in the socio-economic attribute. The hazard and the vulnerability of the element controls the risk level of the regional geo-hazard. The risk analysis supported by GIS in geo-hazard study is one of the most important directions. Based on the author’s studies in recent years, a risk analysis system of regional geo-hazard (RiskAnly) has been developed on the basis of software MAPGIS. The paper introduces the train of system design, the structure and the workflow of RiskAnly. As a case study, the paper also deals with the risk zonation of the regional landslide hazard of China.
基金Supported by the Key Project of National Natural Science Foundation(41130753)China Geological Survey Bureau Land Resources Survey Project(1212011014012)
文摘In conventional susceptibility evaluation of geo-hazards,there are some limits,such as unreasonable division of evaluated region,difficulty in quantifying evaluation indicators,time-consuming calculation.To address these problems,we try to employ the software ArcGIS to evaluate geo-hazards susceptibility.The study area of Yaozhou County is automatically divided into 3562 units.Based on the spatial overlay analysis function of ArcGIS,quantitative evaluation of geo-hazards susceptibility is implemented in the study area,and the geo-hazards susceptibility zoning is mapped.It is observed that the evaluation results match well with field investigations.
文摘The Kinta Valley is an area of karst in the north-western part of Peninsular Malaysia. Over 30 years of uncontrolled land use and development has led to significant changes in topography and geomorphology, such as the appearance of sinkholes. In this paper, geospatial techniques were utilized to the task of evaluating sinkholes susceptibility map using a spatial multi criteria evaluation approach (SMCE). Sinkhole location and a spatial database were applied to calculate eight inherent causative factors for limestone instability namely: lithology, structure (lineament), soil cover, slope, land use mining, urban area features, ponds and rivers. The preparation of the sinkhole geohazard map involved summing the weighted values for each hazard element, which permits the construction of geohazard model;the results of the analysis were validated using the previous actual sinkholes locations in the study area. The spatial distribution of sinkholes occurrence, urban development, faults distribution and ex-mining ponds are factors that are directly responsible for all sinkholes subsidence hazards. Further, the resulting geo-hazard map shows that 93% of recent sinkholes occur in areas where the model flags as “high” and “very high” potential hazard, located in the urbanized part of the valley, while less-developed areas to the west and southwest suffered less sinkhole development. The results can be used for hazard prevention and land-use planning.
文摘Nabq protectorate is one of wonderful natural places in Egypt. It is characterized by diversity of bio-lives such as mangrove forests, coral colonies, wild life plants and migratory birds. Ongoing growth of tourism industries at Sharm El Sheikh northward into the Nabq protectorate causes severe hazards on its natural resources. The aim of the present study is to assess the present geo-environmental hazards in the Nabq protectorate. Assessment includes the analysis of satellite images, topographical, geological and other ancillary geological data using GIS technology. GIS data analyses indicate that the area is under threat from some of geo-hazards. Rough topography and mass wasting with high probability of flash flooding threaten different constructions in this area. The mobilization of coastal sand dunes, wave action and tidal currents are natural impacts on Nabq ecosystems, where moved dunes leave clay soils that are removed in some places by tropical storms increasing sea water turbidity that threaten the corals and other living organisms in the tidal flat region. The seismic activity hazard in the study area is usually active on lineaments extending parallel to the trend of the Gulf of Aqaba-Dead Sea transform fault where the Nabq protectorate occupies its southern segment. Unwise planning activities destroy the natural environmental resources in Nabq area by construction of new resorts on mangrove forests, coral colonies and raised beaches. Hazard assessment identifies land suitability and land use maps that are clearly exhibit models of traditional dams and buffer strips on coastal zone and highways as well as around the Bedouin communities which are worked on tourism and fishing. These maps are urgent in need of an assessment and rehabilitation program to mitigate geo-hazard.
文摘针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、岩性和土地利用9类评价因子,运用AIFFC及自然断点法(natural breakpoint classification,NBC)对连续型因子进行分级,并分别代入加权信息量模型和随机森林模型,获取研究区易发性区划图。采用单因子分级结果精度、灾积比分析和易发性分区结果对AIFFC分级法的优越性进行检验,结果表明:各因子采用AIFFC算法分级的AUC值均高于自然断点法;基于AIFFC的随机森林模型及加权信息量模型的高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提升了7.6%、2.7%。采用AIFFC分级方法优化了地质灾害易发性评价因子分级,显著提高了地质灾害易发性评价的合理性。