The 18th International Symposium on Geodynamics and Earth Tides 2016 covered phenomena that generate temporal variations in geodetic and geophysical observations. In calculating the stress field for Earth tides, the o...The 18th International Symposium on Geodynamics and Earth Tides 2016 covered phenomena that generate temporal variations in geodetic and geophysical observations. In calculating the stress field for Earth tides, the observed geodetic response is used for defining the Earth's theology, the Earth internal structure, 'Earth rotation parameters, and the functioning of the sophisticated instrumentation mounted on Earth and satellites. The instrumentation capable of observing Earth tides, measures changes generated by lithospheric plate movements, as the earthquake cycle and volcanism. Hydrology, tem- perature, and pressure, either of natural or anthropogenic origin, affect the high precision observations, and therefore must be included in this study-realm.展开更多
Establishment of the Russian section in the framework of Global Geodetic Observing System (GGOS) is under progress. New components of "Quasar" network observatories, which are included into GGOS global network as ...Establishment of the Russian section in the framework of Global Geodetic Observing System (GGOS) is under progress. New components of "Quasar" network observatories, which are included into GGOS global network as core stations, are presented. Recent developments include: two new generation radio telescopes with 13 m antennas at Badary and Zelenchukskaya observatories, water vapor radiometers installed at all observatories and software correlator at the Institute of Applied Astronomy. New and potential developments within other networks belonging to different agencies are also considered in the context of widening of Russian section activity in GGOS project, The paper gives a short overview of status, new components and plans, concerning 5 sub-networks of Federal Agency of Scientific Organi- zations, Roskosmos, Rosstandard, and Rosreestr. Short overview of the plans on creating Data and Analysis Distributed Center is also ~iven.展开更多
Seismic and field observations indicate that the Mw7.4 Maduo earthquake ruptured the Jiangcuo fault,which is a secondary fault~85 km south of the northern boundary of the Bayan Hor block in western China.The kinematic...Seismic and field observations indicate that the Mw7.4 Maduo earthquake ruptured the Jiangcuo fault,which is a secondary fault~85 km south of the northern boundary of the Bayan Hor block in western China.The kinematic characteristics of the Jiangcuo fault can shed lights on the seismogenic mechanism of this earthquake.Slip rate is one of the key parameters to describe the kinematic features of a fault,which can also provide quantitative evidences for regional seismic hazard assessments.However,due to lack of effective observations,the slip rate of the Jiangcuo fault has not been studied quantitatively.In this study,we consider the interaction between the Jiangcuo fault and the eastern Kunlun fault,and estimate the slip rates of the two faults using the interseismic GPS observations across the seismogenic region.The inferred results show that the slip rates of the Jiangcuo fault and the Tuosuo Lake segment of the Kunlun fault are 1.2±0.8 and 5.4±0.3 mm a^(-1),respectively.Combining the slip rate with the average slip inferred from the coseismic slip model,the earthquake recurrence interval of the Jiangcuo fault is estimated to be 1800700+3700 years(1100–5500 years).Based on the results derived from previous studies,as well as calculations in this study,we infer that the slip rate of the Kunlun fault may decrease gradually from the Tuosuo Lake segment to the eastern tip.The Jiangcuo fault and its adjacent parallel secondary faults may have absorbed the relative motion of blocks together with the Kunlun fault.展开更多
基金scientifically supported by the IAG:Commission 3,the IAG Sub-commission 3.1 and International Geodynamics and Earth Tide ServiceThe University of Trieste and the sponsors of the Symposium,namely the OGS(Istituto Nazionale di Oceanografia e di Geofisica Sperimentale)+8 种基金the Dipartimento di Fisica E. Caianiello,University of Salernothe Department of Mathematics and Geosciences of the University of TriesteLeica Geosystems S.P.A.International Association of Geodesy (3 IAG Travel Awards for young scientists)the European Geosciences Union(support to 8 young scientists)the Rector Maurizio Fermeglia of the University of Triestethe President Maria Cristina Pedicchio of OGSInstitute of oceanography and applied geophysicsthrough the contribution of the Italian Space Agency in the frame of the project "MOCASS" (-Mass Observation with Cold Atom Sensors in Space
文摘The 18th International Symposium on Geodynamics and Earth Tides 2016 covered phenomena that generate temporal variations in geodetic and geophysical observations. In calculating the stress field for Earth tides, the observed geodetic response is used for defining the Earth's theology, the Earth internal structure, 'Earth rotation parameters, and the functioning of the sophisticated instrumentation mounted on Earth and satellites. The instrumentation capable of observing Earth tides, measures changes generated by lithospheric plate movements, as the earthquake cycle and volcanism. Hydrology, tem- perature, and pressure, either of natural or anthropogenic origin, affect the high precision observations, and therefore must be included in this study-realm.
文摘Establishment of the Russian section in the framework of Global Geodetic Observing System (GGOS) is under progress. New components of "Quasar" network observatories, which are included into GGOS global network as core stations, are presented. Recent developments include: two new generation radio telescopes with 13 m antennas at Badary and Zelenchukskaya observatories, water vapor radiometers installed at all observatories and software correlator at the Institute of Applied Astronomy. New and potential developments within other networks belonging to different agencies are also considered in the context of widening of Russian section activity in GGOS project, The paper gives a short overview of status, new components and plans, concerning 5 sub-networks of Federal Agency of Scientific Organi- zations, Roskosmos, Rosstandard, and Rosreestr. Short overview of the plans on creating Data and Analysis Distributed Center is also ~iven.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFC1500501 and 2017YFC1500305)the National Natural Science Foundation of China(Grant Nos.41674023 and 41304017).
文摘Seismic and field observations indicate that the Mw7.4 Maduo earthquake ruptured the Jiangcuo fault,which is a secondary fault~85 km south of the northern boundary of the Bayan Hor block in western China.The kinematic characteristics of the Jiangcuo fault can shed lights on the seismogenic mechanism of this earthquake.Slip rate is one of the key parameters to describe the kinematic features of a fault,which can also provide quantitative evidences for regional seismic hazard assessments.However,due to lack of effective observations,the slip rate of the Jiangcuo fault has not been studied quantitatively.In this study,we consider the interaction between the Jiangcuo fault and the eastern Kunlun fault,and estimate the slip rates of the two faults using the interseismic GPS observations across the seismogenic region.The inferred results show that the slip rates of the Jiangcuo fault and the Tuosuo Lake segment of the Kunlun fault are 1.2±0.8 and 5.4±0.3 mm a^(-1),respectively.Combining the slip rate with the average slip inferred from the coseismic slip model,the earthquake recurrence interval of the Jiangcuo fault is estimated to be 1800700+3700 years(1100–5500 years).Based on the results derived from previous studies,as well as calculations in this study,we infer that the slip rate of the Kunlun fault may decrease gradually from the Tuosuo Lake segment to the eastern tip.The Jiangcuo fault and its adjacent parallel secondary faults may have absorbed the relative motion of blocks together with the Kunlun fault.