期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Have a correct understanding of the attribute of geologic environmentgive full play to the role of geoscience in environmental protection
1
作者 Ha Chengyou(Institute of Environmental Geology, Ministry of Geology and Mineral Resources, Beijing 100081 , China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1995年第4期491-501,共11页
Haveacorrectunderstandingoftheattributeofgeologicenvironmentgivefullplaytotheroleofgeoscienceinenvironmental... HaveacorrectunderstandingoftheattributeofgeologicenvironmentgivefullplaytotheroleofgeoscienceinenvironmentalprotectionHaCheng... 展开更多
关键词 geologic environment ATTRIBUTE geologic resources geologic capacity geologic disaster.
下载PDF
Assessment of CO_(2)geological storage capacity based on adsorption isothermal experiments at various temperatures:A case study of No.3 coal in the Qinshui Basin
2
作者 Sijie Han Shuxun Sang +2 位作者 Jinchao Zhang Wenxin Xiang Ang Xu 《Petroleum》 EI CSCD 2023年第2期274-284,共11页
Carbon dioxide(CO_(2))capture,utilization,and storage(CCUS)is an important pathway for China to achieve its“2060 carbon neutrality”strategy.Geological sequestration of CO_(2)in deep coals is one of the methods of CC... Carbon dioxide(CO_(2))capture,utilization,and storage(CCUS)is an important pathway for China to achieve its“2060 carbon neutrality”strategy.Geological sequestration of CO_(2)in deep coals is one of the methods of CCUS.Here,the No.3 anthracite in the Qinshui Basin was studied using the superposition of each CO_(2)geological storage category to construct models for theoretical CO_(2)geological storage capacity(TCGSC)assessment,and CO_(2)adsorption capacity variation with depth.CO_(2)geological storage potential of No.3 anthracite coal was assessed by integrating the adsorption capacity with the static storage and dissolution capacities.The results show that(1)CO_(2)adsorption capacities of XJ and SH coals initially increased with depth,peaked at 47.7 cm3/g and 41.5 cm3/g around 1000 m,and later decreased with depth.(2)four assessment areas and their geological model parameters were established based on CO_(2)phase variation and spatial distribution of coal thickness,(3)the abundance of CO_(2)geological storage capacity(ACGSC),which averages 40 cm3/g,shows an analogous circularity-sharp distribution,with the high abundance area influenced by depth and coal rank,and(4)the TCGSC and the effective CO_(2)geological storage capacity(ECGSC)are 9.72 Gt and 6.54 Gt;the gas subcritical area accounted for 76.41%of the total TCGSC.Although adsorption-related storage capacity accounted for more than 90%of total TCGSC,its proportion,however,decreased with depth.Future CO_(2)-ECBM project should focus on highrank coals in gas subcritical and gas-like supercritical areas.Such research will provide significant reference for assessment of CO_(2)geological storage capacity in deep coals. 展开更多
关键词 CO_(2)geological storage in coal Theoretical geological storage capacity The abundance of CO_(2)geological storage capacity ANTHRACITE Qinshui basin
原文传递
Carbon sequestration potential of the Habanero reservoir when carbon dioxide is used as the heat exchange fluid 被引量:4
3
作者 Chaoshui Xu Peter Dowd Qi Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第1期50-59,共10页
The use of sequestered carbon dioxide(CO) as the heat exchange fluid in enhanced geothermal system(EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and inc... The use of sequestered carbon dioxide(CO) as the heat exchange fluid in enhanced geothermal system(EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and increase the economic viability of geothermal power generation. Coupled COsequestration and geothermal energy production from hot dry rock(HDR) EGS were first proposed 15 years ago but have yet to be practically implemented. This paper reviews some of the issues in assessing these systems with particular focus on the power generation and COsequestration capacity. The Habanero geothermal field in the Cooper Basin of South Australia is assessed for its potential COstorage capacity if supercritical COis used as the working fluid for heat extraction. The analysis suggests that the major COsequestration mechanisms are the storage in the fracture-stimulation damaged zone followed by diffusion into the pores within the rock matrix. The assessment indicates that 5% of working fluid loss commonly suggested as the storage capacity might be an over-estimate of the long-term COsequestration capacity of EGS in which supercritical COis used as the circulation fluid. 展开更多
关键词 Carbon sequestration Carbon dioxide(CO_2) geological storage capacity Enhanced geothermal system(EGS) CO_2-EGS Habanero project
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部