In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorp...In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied.In this study,the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin,China.The results show that the characteristics of pore structure will affect the methane adsorption characteristics.The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores.The groove space inside the pore will change the density distribution of methane molecules in the pore,greatly improve the adsorption capacity of the pore,and increase the pressure sensitivity of the adsorption process.Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size,all pores have the strongest methane adsorption capacity when the pore size is about 2 nm.In addition,the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics.The pore adsorption capacity first increases and then decreases with the increase of pressure,and increases with the increase of temperature.In the early stage of thermal evolution,pore adsorption capacity is strong and pressure sensitivity is weak;while in the late stage,it is on the contrary.展开更多
Populations and metropolitan centers are accumulated in coastal areas around the world.In view of the fact that they are geographically adjacent to coasts and intense anthropogenic activities,increasing global offshor...Populations and metropolitan centers are accumulated in coastal areas around the world.In view of the fact that they are geographically adjacent to coasts and intense anthropogenic activities,increasing global offshore pollution has been an important worldwide concern over the past several decades and has become a very serious problem that needs to be addressed urgently.Due to offshore pollution,various geological disasters occur in high frequency,including intensified erosion and salinization of coastal soils,frequent geological collapses and landslides and increasing seismic activities.Moreover,offshore pollution shows increasingly serious impacts on the topography and geomorphology of offshore and coastal areas,including coastal degradation,retreating coastlines and estuary delta erosion.Offshore sedimentation processes are strongly influenced by the pH changes of terrestrial discharges,and sedimentary dynamics have become extremely acute and complex due to offshore pollution.The seabed topography and hydrodynamic environment determine the fate and transport of pollutants entering offshore regions.Coastal estuaries,port basins and lagoons that have relatively moderate ocean currents and winds are more likely to accumulate pollutants.Offshore regions and undersea canyons can be used as conduits for transporting pollutants from the continent to the seabed.It is particularly noteworthy that the spatial/temporal distribution of species,community structures,and ecological functions in offshore areas have undergone unprecedented changes in recent decades.Due to increasing offshore pollution,the stable succession and development trend of marine ecosystems has been broken.It is thus important to identify and regulate the quantity,composition and transportation of pollutants in offshore regions and their behavior in marine ecosystems.In particular,crucial actions for stabilizing marine ecosystems,including increasing species and biodiversity,should be implemented to enhance their anti-interference capabilities.This review provides an overview of the current situation of offshore pollution,as well as major trends of pollutant fate and transportation from continent to marine ecosystems,transformation of pollutants in sediments,and their bioaccumulation and diffusion.This study retrospectively reviews the long-term geological evolution of offshore pollution from the perspective of marine geology,and analyses their long-term potential impacts on marine ecosystems.Due to ecological risks associated with pollutants released from offshore sediments,more research on the influence of global offshore pollution based on marine geology is undoubtedly needed.展开更多
this work focuses on one of the critical points of Earth's history when the Solar System passed through the most distant point of its galactic orbit. During this event, Earth may have suffered from maximum extension,...this work focuses on one of the critical points of Earth's history when the Solar System passed through the most distant point of its galactic orbit. During this event, Earth may have suffered from maximum extension, associated with its relative proximity to the Sun at that time, followed by long-term contraction related to its later distancing. This paper is based on generalized data on the Cretaceous evolution of the Earth as a whole and of East Asia in particular. The evidence suggests that major geological processes at this time may be interpreted as transitional changes in the state of Earth. A liquid nature of its core may have reacted to the gravitational and electromagnetic transformations. When the cosmic changes took place at 135-120 Ma, more turbulent flows in the outer core would have favoured the rise of voluminous magmatic plumes and associated fluid flows. These would substantially transform the mantle, crust, hydrosphere, biosphere and atmosphere. In particular, plume-related melting of overlying subducting slabs and lower continental crust could have initiated numerous adakitic melts that formed the East Asian Adakitic Province. These and associated juvenile events produced numerous metallic ore, coal, gas and oil deposits. The Cretaceous is one of the most significant resource-producing periods.展开更多
-The tectonic types of the Zhujiang (Pearl) River Mouth Basin in the South China Sea are epicontinental rift-depression basins. Prior to Early Cretaceous time, the Dongsha Uplift arid its surrounding depressions had b...-The tectonic types of the Zhujiang (Pearl) River Mouth Basin in the South China Sea are epicontinental rift-depression basins. Prior to Early Cretaceous time, the Dongsha Uplift arid its surrounding depressions had been combined with the Eurasia Plate in a single unit. Many ENE-trending narrow rifted basins were formed in the third episode of Yanshan orogeny (Late Laramide). The rifted basins in the Paleocene and Eocene were stretched and extended, forming Zhu 1, Zhu 2 and Zhu 3 depressions. The Dongsha Uplift is located between Zhu 1 and Zhu 2 depressions . covering an area of 28 000 Km2. Its geologic evolution can be divided into four stages:(1) Late Cretaceous - Paleocene block-faulting stage.(2) Eocene -Oligocene uplifting and eroding stage.(3) Late Oligocene - Early Miocene sustained subsiding stage.(4) Middle Miocene -Recent noncompensated subsiding stage.The Dongsha Uplift is a structural zone favourable for oil-gas accumulation.展开更多
1 Introduction Sichuan Basin is basically a salt brine reservoir,large closed and semi-closed artesian sedimentary basin with an area of 200,000 Km2 in southeast China.During the forming and evolution of the basin,it ...1 Introduction Sichuan Basin is basically a salt brine reservoir,large closed and semi-closed artesian sedimentary basin with an area of 200,000 Km2 in southeast China.During the forming and evolution of the basin,it has been affected by展开更多
The Gan-Hang Belt in Southeast China is characterized by several igneous and siliciclastic basins associated with crustal extension during Late Mesozoic. The sedimentary evolution of the red basins is still poorly und...The Gan-Hang Belt in Southeast China is characterized by several igneous and siliciclastic basins associated with crustal extension during Late Mesozoic. The sedimentary evolution of the red basins is still poorly understood. In this study, sedimentary fades analysis and pebble counting were performed on outcrop sections of the Late Cretaceous Guifeng Group in the Yongfeng-Chongren Basin in central Jiangxi Province. Thirty-five conglomerate outcrops were chosen to measure pebble lithology, size, roundness, weathering degree and preferred orientation. Results show that gravels are mostly fine to coarse pebbles and comprise dominantly quartzites, metamorphic rocks, granitoids and sandstones. Rose diagrams based on imbricated pebbles indicate variable paleocurrent directions. Combining with typical sedimentary structures and vertical successions, we suggest that the Guifeng Group were deposited in alluvial fan, river and playa lake depositional systems. The proposed depositional model indicates that the Hekou Formation represents the start-up stage of the faulted basin, accompanied by sedimentation in alluvial fan and braided river environments. Then this basin turned into a stable expansion stage during the deposition of the Tangbian Formation. Except for minor coarse sediments at the basin margin, the other area is covered with fine-grained sediments of lake and river environments. The Lianhe Formation, however, is once again featured by conglomerates, suggesting a probable tectonic event. Therefore, the study region possibly suffered two tectonic events represented by the conglomerates of the Hekou and Lianhe formations in the context of the crustal extension in Southeast China.展开更多
1 Introduction The Weibei Uplift is located in the southwest of the North China Plate,where is the stable block(the Ordos Block)in the north and the active belt(the QinlingOrogenic Belt)in the south(Ren et al,2014,201...1 Introduction The Weibei Uplift is located in the southwest of the North China Plate,where is the stable block(the Ordos Block)in the north and the active belt(the QinlingOrogenic Belt)in the south(Ren et al,2014,2015).And the belt is separated from the Weihe basin.The Weibei uplift has a uniform crystalline basement with the North展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.41772141,41972171)the Natural Science Foundation of Jiangsu Province(BK20181362),the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied.In this study,the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin,China.The results show that the characteristics of pore structure will affect the methane adsorption characteristics.The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores.The groove space inside the pore will change the density distribution of methane molecules in the pore,greatly improve the adsorption capacity of the pore,and increase the pressure sensitivity of the adsorption process.Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size,all pores have the strongest methane adsorption capacity when the pore size is about 2 nm.In addition,the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics.The pore adsorption capacity first increases and then decreases with the increase of pressure,and increases with the increase of temperature.In the early stage of thermal evolution,pore adsorption capacity is strong and pressure sensitivity is weak;while in the late stage,it is on the contrary.
基金financially supported by the National Natural Science Foundation of China as a Shandong joint key project(Grant No.U1906222)the Ministry of Environmental Science and Technology,People’s Republic of China as a key R&D project(Grant No.2019YFC1804104)the Ministry of Education,People’s Republic of China as a 111 program(Grant No.T2017002)。
文摘Populations and metropolitan centers are accumulated in coastal areas around the world.In view of the fact that they are geographically adjacent to coasts and intense anthropogenic activities,increasing global offshore pollution has been an important worldwide concern over the past several decades and has become a very serious problem that needs to be addressed urgently.Due to offshore pollution,various geological disasters occur in high frequency,including intensified erosion and salinization of coastal soils,frequent geological collapses and landslides and increasing seismic activities.Moreover,offshore pollution shows increasingly serious impacts on the topography and geomorphology of offshore and coastal areas,including coastal degradation,retreating coastlines and estuary delta erosion.Offshore sedimentation processes are strongly influenced by the pH changes of terrestrial discharges,and sedimentary dynamics have become extremely acute and complex due to offshore pollution.The seabed topography and hydrodynamic environment determine the fate and transport of pollutants entering offshore regions.Coastal estuaries,port basins and lagoons that have relatively moderate ocean currents and winds are more likely to accumulate pollutants.Offshore regions and undersea canyons can be used as conduits for transporting pollutants from the continent to the seabed.It is particularly noteworthy that the spatial/temporal distribution of species,community structures,and ecological functions in offshore areas have undergone unprecedented changes in recent decades.Due to increasing offshore pollution,the stable succession and development trend of marine ecosystems has been broken.It is thus important to identify and regulate the quantity,composition and transportation of pollutants in offshore regions and their behavior in marine ecosystems.In particular,crucial actions for stabilizing marine ecosystems,including increasing species and biodiversity,should be implemented to enhance their anti-interference capabilities.This review provides an overview of the current situation of offshore pollution,as well as major trends of pollutant fate and transportation from continent to marine ecosystems,transformation of pollutants in sediments,and their bioaccumulation and diffusion.This study retrospectively reviews the long-term geological evolution of offshore pollution from the perspective of marine geology,and analyses their long-term potential impacts on marine ecosystems.Due to ecological risks associated with pollutants released from offshore sediments,more research on the influence of global offshore pollution based on marine geology is undoubtedly needed.
基金supported by the National Natural Science Foundation of China(No.41420104001)the ‘111’ Project(No.B17042)
文摘this work focuses on one of the critical points of Earth's history when the Solar System passed through the most distant point of its galactic orbit. During this event, Earth may have suffered from maximum extension, associated with its relative proximity to the Sun at that time, followed by long-term contraction related to its later distancing. This paper is based on generalized data on the Cretaceous evolution of the Earth as a whole and of East Asia in particular. The evidence suggests that major geological processes at this time may be interpreted as transitional changes in the state of Earth. A liquid nature of its core may have reacted to the gravitational and electromagnetic transformations. When the cosmic changes took place at 135-120 Ma, more turbulent flows in the outer core would have favoured the rise of voluminous magmatic plumes and associated fluid flows. These would substantially transform the mantle, crust, hydrosphere, biosphere and atmosphere. In particular, plume-related melting of overlying subducting slabs and lower continental crust could have initiated numerous adakitic melts that formed the East Asian Adakitic Province. These and associated juvenile events produced numerous metallic ore, coal, gas and oil deposits. The Cretaceous is one of the most significant resource-producing periods.
文摘-The tectonic types of the Zhujiang (Pearl) River Mouth Basin in the South China Sea are epicontinental rift-depression basins. Prior to Early Cretaceous time, the Dongsha Uplift arid its surrounding depressions had been combined with the Eurasia Plate in a single unit. Many ENE-trending narrow rifted basins were formed in the third episode of Yanshan orogeny (Late Laramide). The rifted basins in the Paleocene and Eocene were stretched and extended, forming Zhu 1, Zhu 2 and Zhu 3 depressions. The Dongsha Uplift is located between Zhu 1 and Zhu 2 depressions . covering an area of 28 000 Km2. Its geologic evolution can be divided into four stages:(1) Late Cretaceous - Paleocene block-faulting stage.(2) Eocene -Oligocene uplifting and eroding stage.(3) Late Oligocene - Early Miocene sustained subsiding stage.(4) Middle Miocene -Recent noncompensated subsiding stage.The Dongsha Uplift is a structural zone favourable for oil-gas accumulation.
基金supported by China Geological Survey Projects(1212010011803, 121201103000150011)
文摘1 Introduction Sichuan Basin is basically a salt brine reservoir,large closed and semi-closed artesian sedimentary basin with an area of 200,000 Km2 in southeast China.During the forming and evolution of the basin,it has been affected by
基金supported by China Geological Survey projects (Grant Nos.1212011120836,1212011220248)China Scholarship Council (Grant No.201308360142)+2 种基金Gan-Po Excellent Talents 555 Project of Jiangxi Province (GCZ 2012-1)Research Foundation of Jiangxi Education Department (Grant No.GJJ13438)the open fund of Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (Grant No.RGET1304)
文摘The Gan-Hang Belt in Southeast China is characterized by several igneous and siliciclastic basins associated with crustal extension during Late Mesozoic. The sedimentary evolution of the red basins is still poorly understood. In this study, sedimentary fades analysis and pebble counting were performed on outcrop sections of the Late Cretaceous Guifeng Group in the Yongfeng-Chongren Basin in central Jiangxi Province. Thirty-five conglomerate outcrops were chosen to measure pebble lithology, size, roundness, weathering degree and preferred orientation. Results show that gravels are mostly fine to coarse pebbles and comprise dominantly quartzites, metamorphic rocks, granitoids and sandstones. Rose diagrams based on imbricated pebbles indicate variable paleocurrent directions. Combining with typical sedimentary structures and vertical successions, we suggest that the Guifeng Group were deposited in alluvial fan, river and playa lake depositional systems. The proposed depositional model indicates that the Hekou Formation represents the start-up stage of the faulted basin, accompanied by sedimentation in alluvial fan and braided river environments. Then this basin turned into a stable expansion stage during the deposition of the Tangbian Formation. Except for minor coarse sediments at the basin margin, the other area is covered with fine-grained sediments of lake and river environments. The Lianhe Formation, however, is once again featured by conglomerates, suggesting a probable tectonic event. Therefore, the study region possibly suffered two tectonic events represented by the conglomerates of the Hekou and Lianhe formations in the context of the crustal extension in Southeast China.
基金supported by Natural Science Foundation of China (Project No. 41630312)The National Nature Science Foundation of China (Project No. 41372208 and 40534019)The Open Found of the State Key Laboratory of Ore Deposit Geochemistry, CAS(Project No. 201304)
文摘1 Introduction The Weibei Uplift is located in the southwest of the North China Plate,where is the stable block(the Ordos Block)in the north and the active belt(the QinlingOrogenic Belt)in the south(Ren et al,2014,2015).And the belt is separated from the Weihe basin.The Weibei uplift has a uniform crystalline basement with the North