With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dan...With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.展开更多
Geological Hazards Investigation and Evaluation is the core course of Environmental Geological Engineering,aiming to cultivate skilled talents with solid theoretical knowledge and excellent practical skills.At present...Geological Hazards Investigation and Evaluation is the core course of Environmental Geological Engineering,aiming to cultivate skilled talents with solid theoretical knowledge and excellent practical skills.At present,the course faces several issues,including a teaching environment disconnected from real-world work scenarios,course content that deviates from job-related tasks,a lack of digital teaching resources,and reliance on a single teaching method,leading to students’poor feedback from employers.Based on the concept of outcome-based education,the course team of Geological Hazards Investigation and Evaluation establishes a“five-step double-rotation”blended teaching model with the help of a Small Private Online Course platform.The program is designed to improve the teaching environment and expand the digitalized teaching resources in order to improve students’learning motivation,enhance learning effectiveness,and cultivate skillful talents who meet employers’satisfaction.展开更多
The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective...The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.展开更多
There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of whic...There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 kin and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°-60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5-3.0 m along the Yingxiu- Beichuan co-seismic fault, and 1.5-1.1 m along the Doujiangyan-Hanwang fault. Movement of the coseismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0-20 km from co-seismic fault.展开更多
Tibet is one of the areas with most serious geological hazards in China, and the distribution of disasters has obvious local charac teristics. Tibet can be classified as three parts through zoning the danger degree, t...Tibet is one of the areas with most serious geological hazards in China, and the distribution of disasters has obvious local charac teristics. Tibet can be classified as three parts through zoning the danger degree, the mountain canyon high danger zone of east and southeast Tibet, the plateau mountain lake basin and valley middle danger zone of south Tibet, and the Plateau Mountain lake basin low danger zone of south Tibet. This paper takes the debris flow, collapse, landslide as the key points to analyze the distribution characteristics of geological hazards, and analyze the factors which influence the distribution of geological hazards, such as terrain landform, formation lithology, geologic structure pattern, precipitation, earthquake, human activity and so on. finally, as a conclusion., in whole Tibet, the geological hazards are more in southeast than in northwest, more in mountainous area which in the edge of plateau and river valley than in the interior of plateau and lake basin. And most hazards distribute in the regions where human activity is stronger than in other regions, for example towns or strips along the highway.展开更多
Gas outbursts from "three-soft" coal seams (soft roof,soft floor and soft coal) constitute a very serious prob-lem in the Ludian gliding structure area in western Henan. By means of theories and methods of g...Gas outbursts from "three-soft" coal seams (soft roof,soft floor and soft coal) constitute a very serious prob-lem in the Ludian gliding structure area in western Henan. By means of theories and methods of gas geology,structural geology,coal petrology and rock tests,we have discussed the effect of control of several physical properties of soft roof on gas preservation and proposed a new method of forecasting gas geological hazards under open structural conditions. The result shows that the areas with type Ⅲ or Ⅳ soft roofs are the most dangerous areas where gas outburst most likely can take place. Therefore,countermeasures should be taken in these areas to prevent gas outbursts.展开更多
Aiming at the geological features of highway engineering in mountainous area of Enshi, Hubei Province, the principles to set up an integrated evaluation system for highway engineering geological hazard are formulated....Aiming at the geological features of highway engineering in mountainous area of Enshi, Hubei Province, the principles to set up an integrated evaluation system for highway engineering geological hazard are formulated. Then, the integrated evaluation system for highway engineering geological hazard in mountainous area of Enshi is established. In the evaluation system, the first-level evaluation indices are geological development degree, geological conditions, and damaging power, whereas the second-level indices including key factors affecting main kinds of geological hazard. Meanwhile, the borders of indices are determined. At last, the method of Fuzzy Comprehensive Evaluation (FCE) is adopted to quantitatively evaluate the highway engineering geological hazard in mountainous area of Enshi.展开更多
Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for model...Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for modeling the probabilities of geological hazard occurrences, upon which hierarchical warnings for rainfall-induced geological hazards are produced. The forecasting and warning model takes numerical precipitation forecasts on grid points as its dynamic input, forecasts the probabilities of geological hazard occurrences on the same grid, and translates the results into likelihoods in the form of a 5-level hierarchy. Validation of the model with observational data for the year 2004 shows that 80% of the geological hazards of the year have been identified as "likely enough to release warning messages". The model can satisfy the requirements of an operational warning system, thus is an effective way to improve the meteorological warnings for geological hazards.展开更多
Geological hazard is an adverse geological condition that can cause loss of life and property.Accurate prediction and analysis of geological hazards is an important and challenging task.In the past decade,there has be...Geological hazard is an adverse geological condition that can cause loss of life and property.Accurate prediction and analysis of geological hazards is an important and challenging task.In the past decade,there has been a great expansion of geohazard detection data and advancement in data-driven simulation techniques.In particular,great efforts have been made in applying deep learning to predict geohazards.To understand the recent progress in this field,this paper provides an overview of the commonly used data sources and deep neural networks in the prediction of a variety of geological hazards.展开更多
Based on the practical application of Geology Information System(GIS) throughout the world, combined with the characters of road's geological hazard and it's supervision, the paper introduces on the importance of ...Based on the practical application of Geology Information System(GIS) throughout the world, combined with the characters of road's geological hazard and it's supervision, the paper introduces on the importance of the research on road's geological hazards information management and decision-making support system. The paper also analyzes the system's target, the principles and key techniques in developing the system. In the research, we developed the GIS-based road's geological hazard information management and decision-making support system and applied it to one speedway in the west of China where contains typical geological hazards. The system based on the database of road's geological hazard on the grounds of spatial graphic information and attribute information. By virtue of the scientific assessment and prediction mathematical model, integrating the GIS's strongpoint on spatial analyzing, the system is capable of visualizing the regionalization of road according to the geological hazards it contains, and accurately assessing and predicting geological hazards, thus efficiently assists the road construction and management units in the decision making on controlling the geological hazards and reducing the related loss.展开更多
The current researches on risk assessment of geological disasters mainly focus on unexpected disasters such as collapses, landslides and mud-rock flows etc. As the convergence zone of land and sea, coastal zone is the...The current researches on risk assessment of geological disasters mainly focus on unexpected disasters such as collapses, landslides and mud-rock flows etc. As the convergence zone of land and sea, coastal zone is the most active and complex area of interactions of lithosphere, hydrosphere, atmosphere, biosphere and anthroposphere. The ecological environment of coastal zone is very fragile, so further systematical research on coastal geological hazard assessment and prevention is in urgent need. The author begins with the definition and research contents and selects three typical coastal geological disasters, namely, the seawater intrusion, coastline change and sea-level rise as the objects of study. The systematic analysis and study on assessment system and methods are conducted, hazard assessment factors are selected, and a completely set of coastal disaster assessment system is established based on the technique of GIS. We took Bao’an District of Shenzhen City as an example and carried out a case study.展开更多
Engineering construction actively occurs in coastal zones, and these areas have numerous potential geological hazard factors. Since 2009, the development of geological surveys in sea areas has promoted extensive geoph...Engineering construction actively occurs in coastal zones, and these areas have numerous potential geological hazard factors. Since 2009, the development of geological surveys in sea areas has promoted extensive geophysical surveys in Qingdao offshore. In the present study, the types and distribution of potential geological hazard factors were systematically revealed using sub-bottom profile data, side-scan sonar data, and single-channel seismic data, among others. Based on previous research findings, the potential geological hazard factors are classified, and control factors in Qingdao offshore are discussed. The research results show that the primary potential geological hazards include active faults, buried paleo channels, shallow gas, irregular bedrock, eroded gullies, estuary deltas, tidal sand ridges, and seawater intrusion. In addition, neotectonic movement, sea level changes and sedimentary dynamic processes were the main factors that affected the distribution of geological hazards in Qingdao offshore.展开更多
The formation and development of geological hazards are extremely complex,depending on factors such as the topography,geology,meteorology, project,human activity,and so on;the geological hazards data include remarkabl...The formation and development of geological hazards are extremely complex,depending on factors such as the topography,geology,meteorology, project,human activity,and so on;the geological hazards data include remarkable spatial characteristics and complex attribute information.As the amount of geological hazards data is rapidly growing,it has become an urgent demand for geologists to展开更多
Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shall...Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shallow gas, sand ridges, erosion ditches, scarps, irregular bedrock features, underwater shoals, buried paleo-channels, and submarine deltas. Based on the seismic profiles, we have constructed a marine geological map of these hazardous features. Shallow gas accumulations are common and occur mainly in two separate nearshore regions that cover 4613 and 3382 km^2 respectively. There are also scattered shallow gas accumulations in the offshore area, typically accompanied by paleo-channels that occur mainly in the middle of the study area. Sand ridges, erosion ditches, scarps, and irregular bedrock features are found mainly in the northeast of the study area in association with each other. In the southeastern part of the study area, the sand ridges have a linear form and trend NW–SE, representing the western part of the linear sand ridges in the East China Sea. The maximum slope gradient is 1?, which suggests that this area is prone to landslides. These hazardous marine geological features are important to marine and engineering activities in this region.展开更多
Various types of geological hazards exist in the South China Sea. In dynamics sense, they can be categorized into 5 principal genetic types related to effects of hydraulic dynamics, gaseous activity, soil mechanics, g...Various types of geological hazards exist in the South China Sea. In dynamics sense, they can be categorized into 5 principal genetic types related to effects of hydraulic dynamics, gaseous activity, soil mechanics, gravity and tectonism, respectively. Integrated analyses indicate that the geological hazards associated with volcanoes, earthquakes and fractures are mainly distributed in tectonically active regions, whereas those resulting from mudflows, landslides and diapirs are usually concentrated in the region of slope, that shallow gas, high pressure gas pockets and soft intercalations are major potential geological hazards in the inner shelf, and that strong hydraulic dynamics, especially storm tide, is one of the major causes of geological hazards in the littoral areas. The geological hazards that occurred in the South China Sea are also characterized by periodicity, succession and, to a certain extent, unpredictability in addition to regionalization.展开更多
On the basis of field observation and measuring data, the authors discuss the types,distributing regularity and gemesos of geological disasters on the Northern Huashan predmont and its foreland plain. We think that ...On the basis of field observation and measuring data, the authors discuss the types,distributing regularity and gemesos of geological disasters on the Northern Huashan predmont and its foreland plain. We think that the activity of Northern Huashan piedmont fault zone since Quaternary period makes the mountain highly uplift,which provide a favorable terrain condition for gravitatiotal geological hazard;the recent activity of the buried fault on the foreland plain is the main reason of ground cracking and sinking .Finally ,we make a synthetical analysis of geological hazard risk on the study area.展开更多
This paper presents a mobile application and a web-based geographic information system for an efficient and cost-effective sharing of geological hazards information in East and Southeast Asia. The information system u...This paper presents a mobile application and a web-based geographic information system for an efficient and cost-effective sharing of geological hazards information in East and Southeast Asia. The information system uses the Open Geospatial Consortium (OGC), Web Map Service (WMS) and Web Processing Service (WPS) for spatial data rendition and processing online. Free and Open Source Software (FOSS) is also used for other important spatial data processing and sharing operations. WMS and WPS are formulated to access and view the geological hazard data in the system’s database. The mobile application is developed to access and share the system’s geospatial contents by sending requests to these web services. The application also makes geological hazard mitigation measures more effective by incorporating the mobile device’s GPS location information with geological hazard data. Information like the distance from the nearest active fault, active volcano and earthquake hypocenter can be easily determined using the application. The mobile application provides an interface for the users to easily access geological hazard information such as active fault, active volcanoes, shorelines inundated by tsunamis, and historical and real time seismic events. The widespread use of mobile devices with Internet connection makes geological hazard information dissemination very efficient using the application. The mobile application is called G-EVER Mobile. G-EVER stands for Asia Pacific Region Global Earthquake and Volcanic Eruption Risk Management consortium. The application can be accessed at https://ccop-geoinfo.org/gever-mo/index.php.展开更多
In China,many geological hazards occurred in remote mountainous regions,and it was time-consuming to disseminate disaster information for the responsible parties to make timely judgements.Besides,only relying on profe...In China,many geological hazards occurred in remote mountainous regions,and it was time-consuming to disseminate disaster information for the responsible parties to make timely judgements.Besides,only relying on professionals to monitor and manage disasters was demanding and costly.The Chinese government created a system to engage residents in the process of disaster risk management,namely’Public Participation Monitoring and Warning’(PPMW),to disseminate timely disaster information and bring down management costs.The objective of this system was to reduce casualties with minimum cost by organizing residents to evacuate from disasters in advance.This paper introduced the PPMW system,including its structure,operation mechanism by reviewing government documents and research articles,and its implementation by a case study of a landslide at Boli village(E 101°01’,N 27°29’),Yanyuan County,Sichuan Province,China on July 19th 2018.Further,this paper analyzed the strengths and limitations of the system and discussed its future development.It had the potential to become an affordable disaster risk management tool for other countries facing similar situations to China.展开更多
It summarized current application statuses of the monitoring technology of geological hazard in the Three Gorges Reservoir Area. Considering the defects of the current monitoring technology of geological hazard, the n...It summarized current application statuses of the monitoring technology of geological hazard in the Three Gorges Reservoir Area. Considering the defects of the current monitoring technology of geological hazard, the new remote and centralized monitoring system of geological hazard based on the Internet was established. It also introduced its theory, structure, application and prospect in detail. The new monitoring system can prevent the geologic disaster from happening, and control the danger of it, and improve upon the level of management, and gather head the ability of preventing disaster, and reduce the running cost of the system.展开更多
This paper analyzed the process and technologies of geological hazard risk evaluation at first, and then explored a set of geological hazard risk evaluation auxiliary software system, including field investigation, th...This paper analyzed the process and technologies of geological hazard risk evaluation at first, and then explored a set of geological hazard risk evaluation auxiliary software system, including field investigation, the present situation in different stages of the evaluation, prediction evaluation and comprehensive evaluation. This system set the field line drawing, delimit, red plane projection of evaluation area slope stability analysis, comprehensive partition and so on four kind of model for the integration. Starting from the feasibility, practicability and extensibility of system, the paper established the system architecture style, data modeling and standard, and discussed four kinds of models in the system.展开更多
基金supported by the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2023YFS0380, 2023YFS0377, 2019YFG0460, 2022YFS0539)。
文摘With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.
基金Scientific Research Fund of Hunan Provincial Education Department Excellent Youth Project(23B0953)Hunan Province Vocational College Education and Teaching Reform Research Project(ZJGB2022427)。
文摘Geological Hazards Investigation and Evaluation is the core course of Environmental Geological Engineering,aiming to cultivate skilled talents with solid theoretical knowledge and excellent practical skills.At present,the course faces several issues,including a teaching environment disconnected from real-world work scenarios,course content that deviates from job-related tasks,a lack of digital teaching resources,and reliance on a single teaching method,leading to students’poor feedback from employers.Based on the concept of outcome-based education,the course team of Geological Hazards Investigation and Evaluation establishes a“five-step double-rotation”blended teaching model with the help of a Small Private Online Course platform.The program is designed to improve the teaching environment and expand the digitalized teaching resources in order to improve students’learning motivation,enhance learning effectiveness,and cultivate skillful talents who meet employers’satisfaction.
基金Supported by National Natural Science Foundation of China (50625927,50727904)the National Basic Research Program (973) of China (2007CB209407)Ministry of Communications’Scientific and Technological Program of Transportation Development in Western China(2009318000008)
文摘The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.
基金supported by the Department of Science and Technology and International Cooperation,The Ministry of Land and Resources,P.R.ChinaFinancial supported by the research of"Longmenshan fault zone and dynamical condition analysis of Wenchuan earthquake"(No.2008CB425702)
文摘There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 kin and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°-60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5-3.0 m along the Yingxiu- Beichuan co-seismic fault, and 1.5-1.1 m along the Doujiangyan-Hanwang fault. Movement of the coseismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0-20 km from co-seismic fault.
文摘Tibet is one of the areas with most serious geological hazards in China, and the distribution of disasters has obvious local charac teristics. Tibet can be classified as three parts through zoning the danger degree, the mountain canyon high danger zone of east and southeast Tibet, the plateau mountain lake basin and valley middle danger zone of south Tibet, and the Plateau Mountain lake basin low danger zone of south Tibet. This paper takes the debris flow, collapse, landslide as the key points to analyze the distribution characteristics of geological hazards, and analyze the factors which influence the distribution of geological hazards, such as terrain landform, formation lithology, geologic structure pattern, precipitation, earthquake, human activity and so on. finally, as a conclusion., in whole Tibet, the geological hazards are more in southeast than in northwest, more in mountainous area which in the edge of plateau and river valley than in the interior of plateau and lake basin. And most hazards distribute in the regions where human activity is stronger than in other regions, for example towns or strips along the highway.
文摘Gas outbursts from "three-soft" coal seams (soft roof,soft floor and soft coal) constitute a very serious prob-lem in the Ludian gliding structure area in western Henan. By means of theories and methods of gas geology,structural geology,coal petrology and rock tests,we have discussed the effect of control of several physical properties of soft roof on gas preservation and proposed a new method of forecasting gas geological hazards under open structural conditions. The result shows that the areas with type Ⅲ or Ⅳ soft roofs are the most dangerous areas where gas outburst most likely can take place. Therefore,countermeasures should be taken in these areas to prevent gas outbursts.
文摘Aiming at the geological features of highway engineering in mountainous area of Enshi, Hubei Province, the principles to set up an integrated evaluation system for highway engineering geological hazard are formulated. Then, the integrated evaluation system for highway engineering geological hazard in mountainous area of Enshi is established. In the evaluation system, the first-level evaluation indices are geological development degree, geological conditions, and damaging power, whereas the second-level indices including key factors affecting main kinds of geological hazard. Meanwhile, the borders of indices are determined. At last, the method of Fuzzy Comprehensive Evaluation (FCE) is adopted to quantitatively evaluate the highway engineering geological hazard in mountainous area of Enshi.
基金the New Technology Generalization Project of China Meteorological Administration (CMATG2004M05)
文摘Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for modeling the probabilities of geological hazard occurrences, upon which hierarchical warnings for rainfall-induced geological hazards are produced. The forecasting and warning model takes numerical precipitation forecasts on grid points as its dynamic input, forecasts the probabilities of geological hazard occurrences on the same grid, and translates the results into likelihoods in the form of a 5-level hierarchy. Validation of the model with observational data for the year 2004 shows that 80% of the geological hazards of the year have been identified as "likely enough to release warning messages". The model can satisfy the requirements of an operational warning system, thus is an effective way to improve the meteorological warnings for geological hazards.
文摘Geological hazard is an adverse geological condition that can cause loss of life and property.Accurate prediction and analysis of geological hazards is an important and challenging task.In the past decade,there has been a great expansion of geohazard detection data and advancement in data-driven simulation techniques.In particular,great efforts have been made in applying deep learning to predict geohazards.To understand the recent progress in this field,this paper provides an overview of the commonly used data sources and deep neural networks in the prediction of a variety of geological hazards.
基金the Foundation of Project of Development of Transportation in Western of Ministry of Communication of China (200331880201)
文摘Based on the practical application of Geology Information System(GIS) throughout the world, combined with the characters of road's geological hazard and it's supervision, the paper introduces on the importance of the research on road's geological hazards information management and decision-making support system. The paper also analyzes the system's target, the principles and key techniques in developing the system. In the research, we developed the GIS-based road's geological hazard information management and decision-making support system and applied it to one speedway in the west of China where contains typical geological hazards. The system based on the database of road's geological hazard on the grounds of spatial graphic information and attribute information. By virtue of the scientific assessment and prediction mathematical model, integrating the GIS's strongpoint on spatial analyzing, the system is capable of visualizing the regionalization of road according to the geological hazards it contains, and accurately assessing and predicting geological hazards, thus efficiently assists the road construction and management units in the decision making on controlling the geological hazards and reducing the related loss.
文摘The current researches on risk assessment of geological disasters mainly focus on unexpected disasters such as collapses, landslides and mud-rock flows etc. As the convergence zone of land and sea, coastal zone is the most active and complex area of interactions of lithosphere, hydrosphere, atmosphere, biosphere and anthroposphere. The ecological environment of coastal zone is very fragile, so further systematical research on coastal geological hazard assessment and prevention is in urgent need. The author begins with the definition and research contents and selects three typical coastal geological disasters, namely, the seawater intrusion, coastline change and sea-level rise as the objects of study. The systematic analysis and study on assessment system and methods are conducted, hazard assessment factors are selected, and a completely set of coastal disaster assessment system is established based on the technique of GIS. We took Bao’an District of Shenzhen City as an example and carried out a case study.
基金jointed funded by the National Natural Science Foundation of China (41376079 and 41276060)Marine Geology Survey Project (GZH200900501,DD20160137 and DD20190205)Foundation of the Shandong Provincial Key Laboratory of Marine Ecology and Environment&Disaster Prevention (201304).
文摘Engineering construction actively occurs in coastal zones, and these areas have numerous potential geological hazard factors. Since 2009, the development of geological surveys in sea areas has promoted extensive geophysical surveys in Qingdao offshore. In the present study, the types and distribution of potential geological hazard factors were systematically revealed using sub-bottom profile data, side-scan sonar data, and single-channel seismic data, among others. Based on previous research findings, the potential geological hazard factors are classified, and control factors in Qingdao offshore are discussed. The research results show that the primary potential geological hazards include active faults, buried paleo channels, shallow gas, irregular bedrock, eroded gullies, estuary deltas, tidal sand ridges, and seawater intrusion. In addition, neotectonic movement, sea level changes and sedimentary dynamic processes were the main factors that affected the distribution of geological hazards in Qingdao offshore.
文摘The formation and development of geological hazards are extremely complex,depending on factors such as the topography,geology,meteorology, project,human activity,and so on;the geological hazards data include remarkable spatial characteristics and complex attribute information.As the amount of geological hazards data is rapidly growing,it has become an urgent demand for geologists to
基金supported by the China-ASEAN maritime cooperation fund (Comparative Study of Holocene Sedimentary Evolution of the Yangtze River Delta and the Red River Delta)the National Natural Science Foundation of China (Nos. 41306063 and 41330964)the China Geology Survey (Nos. GZH201200506 and DD20 160145)
文摘Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shallow gas, sand ridges, erosion ditches, scarps, irregular bedrock features, underwater shoals, buried paleo-channels, and submarine deltas. Based on the seismic profiles, we have constructed a marine geological map of these hazardous features. Shallow gas accumulations are common and occur mainly in two separate nearshore regions that cover 4613 and 3382 km^2 respectively. There are also scattered shallow gas accumulations in the offshore area, typically accompanied by paleo-channels that occur mainly in the middle of the study area. Sand ridges, erosion ditches, scarps, and irregular bedrock features are found mainly in the northeast of the study area in association with each other. In the southeastern part of the study area, the sand ridges have a linear form and trend NW–SE, representing the western part of the linear sand ridges in the East China Sea. The maximum slope gradient is 1?, which suggests that this area is prone to landslides. These hazardous marine geological features are important to marine and engineering activities in this region.
文摘Various types of geological hazards exist in the South China Sea. In dynamics sense, they can be categorized into 5 principal genetic types related to effects of hydraulic dynamics, gaseous activity, soil mechanics, gravity and tectonism, respectively. Integrated analyses indicate that the geological hazards associated with volcanoes, earthquakes and fractures are mainly distributed in tectonically active regions, whereas those resulting from mudflows, landslides and diapirs are usually concentrated in the region of slope, that shallow gas, high pressure gas pockets and soft intercalations are major potential geological hazards in the inner shelf, and that strong hydraulic dynamics, especially storm tide, is one of the major causes of geological hazards in the littoral areas. The geological hazards that occurred in the South China Sea are also characterized by periodicity, succession and, to a certain extent, unpredictability in addition to regionalization.
文摘On the basis of field observation and measuring data, the authors discuss the types,distributing regularity and gemesos of geological disasters on the Northern Huashan predmont and its foreland plain. We think that the activity of Northern Huashan piedmont fault zone since Quaternary period makes the mountain highly uplift,which provide a favorable terrain condition for gravitatiotal geological hazard;the recent activity of the buried fault on the foreland plain is the main reason of ground cracking and sinking .Finally ,we make a synthetical analysis of geological hazard risk on the study area.
文摘This paper presents a mobile application and a web-based geographic information system for an efficient and cost-effective sharing of geological hazards information in East and Southeast Asia. The information system uses the Open Geospatial Consortium (OGC), Web Map Service (WMS) and Web Processing Service (WPS) for spatial data rendition and processing online. Free and Open Source Software (FOSS) is also used for other important spatial data processing and sharing operations. WMS and WPS are formulated to access and view the geological hazard data in the system’s database. The mobile application is developed to access and share the system’s geospatial contents by sending requests to these web services. The application also makes geological hazard mitigation measures more effective by incorporating the mobile device’s GPS location information with geological hazard data. Information like the distance from the nearest active fault, active volcano and earthquake hypocenter can be easily determined using the application. The mobile application provides an interface for the users to easily access geological hazard information such as active fault, active volcanoes, shorelines inundated by tsunamis, and historical and real time seismic events. The widespread use of mobile devices with Internet connection makes geological hazard information dissemination very efficient using the application. The mobile application is called G-EVER Mobile. G-EVER stands for Asia Pacific Region Global Earthquake and Volcanic Eruption Risk Management consortium. The application can be accessed at https://ccop-geoinfo.org/gever-mo/index.php.
基金supported by the International Partnership Program(131551KYSB20160002)the National Natural Science Foundation of China(41790433,41807509,41601571)IMHE fund(SDS-QN-1915 and SDS-QN-1705)。
文摘In China,many geological hazards occurred in remote mountainous regions,and it was time-consuming to disseminate disaster information for the responsible parties to make timely judgements.Besides,only relying on professionals to monitor and manage disasters was demanding and costly.The Chinese government created a system to engage residents in the process of disaster risk management,namely’Public Participation Monitoring and Warning’(PPMW),to disseminate timely disaster information and bring down management costs.The objective of this system was to reduce casualties with minimum cost by organizing residents to evacuate from disasters in advance.This paper introduced the PPMW system,including its structure,operation mechanism by reviewing government documents and research articles,and its implementation by a case study of a landslide at Boli village(E 101°01’,N 27°29’),Yanyuan County,Sichuan Province,China on July 19th 2018.Further,this paper analyzed the strengths and limitations of the system and discussed its future development.It had the potential to become an affordable disaster risk management tool for other countries facing similar situations to China.
文摘It summarized current application statuses of the monitoring technology of geological hazard in the Three Gorges Reservoir Area. Considering the defects of the current monitoring technology of geological hazard, the new remote and centralized monitoring system of geological hazard based on the Internet was established. It also introduced its theory, structure, application and prospect in detail. The new monitoring system can prevent the geologic disaster from happening, and control the danger of it, and improve upon the level of management, and gather head the ability of preventing disaster, and reduce the running cost of the system.
文摘This paper analyzed the process and technologies of geological hazard risk evaluation at first, and then explored a set of geological hazard risk evaluation auxiliary software system, including field investigation, the present situation in different stages of the evaluation, prediction evaluation and comprehensive evaluation. This system set the field line drawing, delimit, red plane projection of evaluation area slope stability analysis, comprehensive partition and so on four kind of model for the integration. Starting from the feasibility, practicability and extensibility of system, the paper established the system architecture style, data modeling and standard, and discussed four kinds of models in the system.