Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th...Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.展开更多
The design and construction of underground structures are significantly affected by the distribution of geological formations.Prediction of the geological interfaces using limited data has been a difficult task.A mult...The design and construction of underground structures are significantly affected by the distribution of geological formations.Prediction of the geological interfaces using limited data has been a difficult task.A multivariate adaptive regression spline(MARS)method capable of modeling nonlinearities automatically was used in this study to spatially predict the elevations of geological interfaces.Borehole data from two sites in Singapore were used to evaluate the capability of the MARS method for predicting geological interfaces.By comparing the predicted values with the borehole data,it is shown that the MARS method has a mean of root mean square error of 4.4 m for the predicted elevations of the Kallang Formation–Old Alluvium interface.In addition,the MARS method is able to produce reasonable prediction intervals in the sense that the percentage of testing data covered by 95% prediction intervals was close to the associated confidence level,95%.More importantly,the prediction interval evaluated by the MARS method had a non-constant width that appropriately reflected the data density and geological complexity.展开更多
基金We acknowledge the funding support from the National Science Fund for Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.42225702)the National Natural Science Foundation of China(Grant No.42077235).
文摘Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.
基金supported by the Singapore Ministry of National Development and the National Research Foundation,Prime Minister’s Office under the Land and Liveability National Innovation Challenge(L2 NIC)Research Programme(Award No.L2NICCFP2-2015-1).
文摘The design and construction of underground structures are significantly affected by the distribution of geological formations.Prediction of the geological interfaces using limited data has been a difficult task.A multivariate adaptive regression spline(MARS)method capable of modeling nonlinearities automatically was used in this study to spatially predict the elevations of geological interfaces.Borehole data from two sites in Singapore were used to evaluate the capability of the MARS method for predicting geological interfaces.By comparing the predicted values with the borehole data,it is shown that the MARS method has a mean of root mean square error of 4.4 m for the predicted elevations of the Kallang Formation–Old Alluvium interface.In addition,the MARS method is able to produce reasonable prediction intervals in the sense that the percentage of testing data covered by 95% prediction intervals was close to the associated confidence level,95%.More importantly,the prediction interval evaluated by the MARS method had a non-constant width that appropriately reflected the data density and geological complexity.