With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of th...The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of the Karatau fault weakened gradually from west to east in the South Turgay Basin.Typical flower structures developed on the section,and strike-slip faults showed an echelon pattern on planar view.The Karatau strike-slip fault affected the South Turgay Basin in two periods:(1) The South Turgay strike-slip pull-apart rift basin formed as a result of regional extensive stress in the Early-Middle Jurassic,characterized by the juxtaposition of horsts and grabens.The formation of horsts provided favorable reservoir spaces for later hydrocarbon accumulation,and different filling stages of grabens controlled different reservoir-forming factors in grabens.(2) Two stages of tectonic inversion occurred in the Late Jurassic and Late Cretaceous and played a crucial role in the final shape of the structure in the South Turgay Basin.The oil and gas migrated to form reservoirs and mainly concentrated in the horsts,graben slopes and in both sides of the strike-slip fault zone.In the case of the degree of accumulation of petroleum,the factor explaining why horsts are better than grabens is the strike-slip pull-apart of the South Turgay Basin,and the structure inversion of the South Turgay Basin explains why the west graben is better than the east one.Overall,the Karatau strike-slip fault played a very important role in the formation of the South Turgay Basin and its hydrocarbon accumulations.展开更多
The zircon SHRIMP dating age for the Shangyou granites is 464±11 Ma. The geological feature of the pluton is consistent with the isotopic age, which shows that it is a product of Caledonian orogenesis. The Shangy...The zircon SHRIMP dating age for the Shangyou granites is 464±11 Ma. The geological feature of the pluton is consistent with the isotopic age, which shows that it is a product of Caledonian orogenesis. The Shangyou granites are regarded as peraluminous crust-derived granites to possess the typical geochemical characteristics of calc-alkaline rocks on the active continental margin with enriched Si, K, Al (A/CNK -- 1.11 on average), HREE, Rb, U, Th and heavily depleted V, Cr, Co, Ni, as well as Ti-Y, Nb-Ta, Zr, Sr, P and Ba, to be commonly corundum normative (av C -- 1.44). The Shangyou granites with higher 87Sr/86Sr ratios (0.707126-0.712186), ENd(t) values (-7.29 to -10.22) and (tDM) values (1.52-1.63 Ga), which are considered to result from partial melting of continental crust metamorphic sedimentary rocks with relatively low of crust maturation degree corresponding to the Middle Proterozoic, to have some possible contributions of mantle-derived components. The Shangyou granites are regarded as post-collision granites, which were formed in a transitional tectonic setting from compression to extension in the Middle Ordovician period after the Yangtze plate was subducted beneath the Cathaysian plate. The Ar-Ar total ages of K-feldspar and biotite are 292.1 Ma and 295.5 Ma respectively, which have recorded information of a late-stage thermal alteration event.展开更多
1 Introduction Tieshan Syenite crosses between Dongfeng and Zhangyuan’an in Zhenghe of Fujian province,occurs in the direction of 42°,Total length 8500m,width 600-800m and its Area of about 39km2.Outcrops of the...1 Introduction Tieshan Syenite crosses between Dongfeng and Zhangyuan’an in Zhenghe of Fujian province,occurs in the direction of 42°,Total length 8500m,width 600-800m and its Area of about 39km2.Outcrops of the mass are展开更多
The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport ...The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport of slide and slump,fluid transport of debris flow and turbidity currents are driven by gravity in deep-water lacustrine environment.The transformation between debris flow and turbidity current,and the transformation of turbidity current between supercritical and subcritical conditions are the main dynamic mechanisms of gravity flow deposits in a lake basin.The erosion of supercritical turbidity current controls the formation of gravity-flow channel.Debris flow deposition gives rise to tongue shape lobe rather than channel.Deep-water gravity flow deposits are of two origins,intrabasinal and extrabasinal.Intrabasinal gravity flow deposits occur as single tongue-shape lobe or fan of stacking multiple lobes.Extrabasinal gravity-flow deposits occur as sublacustrine fan with channel or single channel sand body.However,the nearshore subaqueous fan is characterized by fan of stacking multiple tongue shape lobes without channel.The differential diagenesis caused by differentiation in the nearshore subaqueous fan facies belt results in the formation of diagenetic trap.The extrabasinal gravity flow deposits are one of the important reasons for the abundant deep-water sand bodies in a lake basin.Slide mass-transport deposits form a very important type of lithologic trap near the delta front often ignored.The fine-grained sediment caused by flow transformation is the potential"sweet spot"of shale oil and gas.展开更多
Objective The Great Xing'an Range is located in the eastern section of Central Asian Orogenic Belt(CAOB).As a superposed position of multiple tectonic domains,its structural evoIlution has always been a focused iss...Objective The Great Xing'an Range is located in the eastern section of Central Asian Orogenic Belt(CAOB).As a superposed position of multiple tectonic domains,its structural evoIlution has always been a focused issue of geological research.展开更多
The eolian deposits distributed in the river valleys in the eastern margin of the Tibetan Plateau (TP) are very useful in neotectonic and paleoclimatic studies. Firstly, the climate in the eastern margin of the TP i...The eolian deposits distributed in the river valleys in the eastern margin of the Tibetan Plateau (TP) are very useful in neotectonic and paleoclimatic studies. Firstly, the climate in the eastern margin of the TP is mainly controlled by the Indian summer monsoon, and detailed studies on the loess-paleosol sequences in this region can provide valuable terrestrial evidence of past changes in the Indian summer monsoon. Secondly, the river terraces in the eastern margin of the TP are considered to be a sensitive recorder of neotectonism to reflect the timing and amplitude of the TP uplift.展开更多
Objective The Yangbin porphyry tin deposit in Taishun County of Zhejiang Province is one of the few porphyry-type tin deposits in South China, which is located in the middle portion of the Mesozoic volcanic active bel...Objective The Yangbin porphyry tin deposit in Taishun County of Zhejiang Province is one of the few porphyry-type tin deposits in South China, which is located in the middle portion of the Mesozoic volcanic active belt on the southeastern coast of China. The Yangbin granite porphyry is closely related to the tin mineralization in this region. Based on petrologic and Sr-Nd-Pb isotopic展开更多
1 Introduction The Longgen Lead-Zinc deposit is located in the southern Gangdise-Nyainqentantanglha plate and belongs to the western section of the Nyainqentantanglha copper-lead-zinc-silver metallogenic belt.In this ...1 Introduction The Longgen Lead-Zinc deposit is located in the southern Gangdise-Nyainqentantanglha plate and belongs to the western section of the Nyainqentantanglha copper-lead-zinc-silver metallogenic belt.In this paper,展开更多
Objective Located near the intersection of Yangtze craton, Tibet- Sanjiang orogen and Songpan-Ganzi orogen of Northwest Yunnan Province, the Mahuaping deposit is a unique large -scale tungsten-beryllium-fluorite ore ...Objective Located near the intersection of Yangtze craton, Tibet- Sanjiang orogen and Songpan-Ganzi orogen of Northwest Yunnan Province, the Mahuaping deposit is a unique large -scale tungsten-beryllium-fluorite ore deposit ever discovered in this area. In recent years, many studies have been carried out in Sanjiang Tethyan metallogenic belt and aforementioned adjacent regions. To date, however, little attention has been paid to this deposit, for example, the geochronology of Mahuaping W-Be deposit still remains unsolved. In this study, we have pioneered research about muscovite 40Ar-39Ar age to better understand the geochronology of the Mahuaping W-Be deposit.展开更多
Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that ...Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that the ELIP age, duration, scale and generation mechanism are still controversial. Among those scientific topics, some scholars suggest that ELIP is an example of up-doming prior to LIP formation, which was evidenced by: (1) The thickness of the Yangxin Formation (P^v) limestone unit, which lies directly beneath ELIP, reduces from the center of erosional area to the outer edge. (2) Paleo-karst surfaces are present. (3) The clastic rocks of alluvial fan deposits, from the eroded materials in the maximum uplifted area, developed surrounding the inner zone. However, other scholars urge that those so-called "alluvial fan" deposits are "hydromagmatic deposits", erupted or emplaced at or near sea level, and conclude that there was no pre-emptive uplift in ELIP. In order to constrain the above-mentioned scientific issue, we conducted detailed field geological investigations and systematically measured geological sections to provide new evidence by using sedimentary data.展开更多
1 Introduction Granitoid magmas have been widely used as a natural probe for tracing the crustal evolution process(Martin et al.,2005).Mesozoic granitoids are widespread in the Dabie
1 Introduction Santanghu Basin is located between the Armantai and Karamaili suture zone,at the junction of the Siberia,Kazakhstan and Tarim plates(Chen and Jahn,2004;Xiao et al.,2008).As an important part of the Cent...1 Introduction Santanghu Basin is located between the Armantai and Karamaili suture zone,at the junction of the Siberia,Kazakhstan and Tarim plates(Chen and Jahn,2004;Xiao et al.,2008).As an important part of the Central Asian展开更多
An important Paleoproterozoic mobile belt event took place in the North China Craton(NCC),termed the Hutuo Movement.This has been interpreted as a cratonic reworking event with rifting-subduction-collision
The Himalayan leucograite, which is typical production of continent-continent collision orogenic belt, has become a research hotspot of the Tibetan Plateau. The research on the leucogranite would help to verify and im...The Himalayan leucograite, which is typical production of continent-continent collision orogenic belt, has become a research hotspot of the Tibetan Plateau. The research on the leucogranite would help to verify and improve the continent-continent collision orogenic theory. (Huang et al., 2017; Fig. la). Previous studies show the Himalayan leucogranite was mainly melted from crust materials (Guo and Wilson, 2012). But it remains controversial for the formation model as to whether it formed from gathering of dikes or diaper of deep magma chambers.展开更多
The southern Anhui metamorphic terrane is traditionally regarded as a part of middle-lateProterozoic "Jiangnan Old Land". Based on the occurrence of palynomorphsAsperatopsophosphaera sp., Trachysphaeridium s...The southern Anhui metamorphic terrane is traditionally regarded as a part of middle-lateProterozoic "Jiangnan Old Land". Based on the occurrence of palynomorphsAsperatopsophosphaera sp., Trachysphaeridium sp. and Nucellosphaeridium sp. (late展开更多
The Qinghai Lake in North China is the largest interior plateau lake in Central Asia, and is sensitive to climate change and the environmental effects of Tibetan Plateau uplift. An almost continuous 626 m long sedimen...The Qinghai Lake in North China is the largest interior plateau lake in Central Asia, and is sensitive to climate change and the environmental effects of Tibetan Plateau uplift. An almost continuous 626 m long sediment core was drilled in an in-filled part of the southern lake basin in the Scientific Drilling at Qinghai Lake.展开更多
A total of 1 264 sulfur isotopic values for modern seafloor hydrothermel sediments from different hydrothermal fields have been collected.On this basis,combining our sulfur isotpic data for surface hydrothermal sedime...A total of 1 264 sulfur isotopic values for modern seafloor hydrothermel sediments from different hydrothermal fields have been collected.On this basis,combining our sulfur isotpic data for surface hydrothermal sediments from the Jade hydrohtermal field in the Okinawa Trough and the TAG hydrothermal field in the Mid-Atlantic Ridge,respectively,and comparing the sulfur isotopic compositions and analyzing their sources of sulfur in seafloor hydrothermal sediments from different geologic-tectonic setting,the results show that:(1) sulfur isotopic values of sulfides and sulfates in modern seafloor hydrothermal sediments are concentrated in a narrow range,δ 34S values of sulfides vary from 1×10 -3 to 9×10 -3,with a mean of 4.5×10 -3 (n=1042),δ 34S values of sulfates vary from 19×10 -3 to 24×10 -3,with a mean of 21.3×10 -3(n=217);(2) comparing the sulfur isotopic compositions of hydrothermal sediments from the sediment-hosted hydrothermal fields,the range of sulfur isotopic values for hydrothermal sediments from the sediment-free hydrothermal fields is narrow relatively;(3) the differences of sulfur isotopic compositions in sulfides from different hydrothermal fields show the differences in the sources of sulfur.The sulfur of hydrothermal sulfides in the sediment-free mid-ocean ridges is mainly from mid- ocean ridge basalt,and partially from the reduced seawater sulfate,and it is the result of partially reduced seawater sulfate mixed with basaltic sulfur.In the sediment-hosted mid-ocean ridges and the back-arc basins,the volcanics,the sediments and the organic matters also can offer their sulfur for forming hydrothermal sulfides;(4)the variations of sulfur isotopic compositions and the different sources of sulfur for hydrothermal sediments may be attributed to the various physical-chemical characteristics of hydrothermal fluids,the magmatic evolution and the different geologic-tectonic settings of seafloor hydrothermal systems.展开更多
Age and nature of the Budate Group in the Hailar Basin are of great significance in studying the evolution of the Hailar Basin and the Xing'an-Mongolian Orogenic Belt(XMOB).Zircon U-Pb ages of eight volcanic rocks...Age and nature of the Budate Group in the Hailar Basin are of great significance in studying the evolution of the Hailar Basin and the Xing'an-Mongolian Orogenic Belt(XMOB).Zircon U-Pb ages of eight volcanic rocks from the Budate Group and two basement granites in the Hailar Basin were reported in this study.The dating results indicated that the formation of these volcanic rocks was consistent with the emplacement of Late Paleozoic basement granite in age(356-290 Ma),i.e.,Early Carboniferous to Early Permian rather than Early Mesozoic.Combined with regional geology,it was concluded that the Budate Group is the component of the basement of the Hailar Basin,and these volcanic rocks were formed at an active continental margin,which is related to the closure of the Hegen Mountains suture zone.The captured Neoproterozoic zircons(814-873 Ma) were probably derived from the Neoproterozoic basement materials in the Ergun Block,implying the close genetic relationships between the Ergun Block(including the Hailar Basin) and the Siberian Block.展开更多
The values of the helium isotopes in the inclusions of the Ordovician reservoir rocks in the Kongxi buried hill belt in the Huanghua depression were first measured and the source of helium and its geological significa...The values of the helium isotopes in the inclusions of the Ordovician reservoir rocks in the Kongxi buried hill belt in the Huanghua depression were first measured and the source of helium and its geological significance were investigated in comparison with those of the helium isotopes in the conclusions in the Ordovician rocks in the Ordos basin and the Tarim basin. The input of the mantle-derived helium into the inclusions in the carbonate reservoir rocks was found from the Konggu 3 well, the Konggu 4 well, and the Konggu 7 well in the Kongxi buried hill belt. The 3He/4He and R/Ra in the conclusions in the Ordovician oil-bearing reservoir rocks in the Konggu 7 well average 2.54×10-6(3) (sample quantity, the same below) and 1.82(3), respectively. The percent of the mantle-derived helium in the inclusions of the reservoir rocks in the Konggu 7 well reaches up to an average of 23.0%(3). The age of the contribution of the mantle-derived helium to the inclusions in the Kongxi buried hill belt is in the Late Triassic or the Early Tertiary. The finding of the mantle-derived helium shows that the interaction of the deep crust with mantle and the activity of deep faults occurred, the terrestrial heat flow value was high, and mantle-derived inorganic gas pools might be formed in the Kongxi buried hill belt. The finding of the mantle-derived helium in the inclusions of oil-bearing reservoir rocks also provides a new way for researching the activity of mantle-derived matter and its associated geological problems.展开更多
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
基金supported by the Major National Science and Technology Projects of China (No. 2008ZX05029-002)CNPC Research Topics of China (No.07B60101)
文摘The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of the Karatau fault weakened gradually from west to east in the South Turgay Basin.Typical flower structures developed on the section,and strike-slip faults showed an echelon pattern on planar view.The Karatau strike-slip fault affected the South Turgay Basin in two periods:(1) The South Turgay strike-slip pull-apart rift basin formed as a result of regional extensive stress in the Early-Middle Jurassic,characterized by the juxtaposition of horsts and grabens.The formation of horsts provided favorable reservoir spaces for later hydrocarbon accumulation,and different filling stages of grabens controlled different reservoir-forming factors in grabens.(2) Two stages of tectonic inversion occurred in the Late Jurassic and Late Cretaceous and played a crucial role in the final shape of the structure in the South Turgay Basin.The oil and gas migrated to form reservoirs and mainly concentrated in the horsts,graben slopes and in both sides of the strike-slip fault zone.In the case of the degree of accumulation of petroleum,the factor explaining why horsts are better than grabens is the strike-slip pull-apart of the South Turgay Basin,and the structure inversion of the South Turgay Basin explains why the west graben is better than the east one.Overall,the Karatau strike-slip fault played a very important role in the formation of the South Turgay Basin and its hydrocarbon accumulations.
文摘The zircon SHRIMP dating age for the Shangyou granites is 464±11 Ma. The geological feature of the pluton is consistent with the isotopic age, which shows that it is a product of Caledonian orogenesis. The Shangyou granites are regarded as peraluminous crust-derived granites to possess the typical geochemical characteristics of calc-alkaline rocks on the active continental margin with enriched Si, K, Al (A/CNK -- 1.11 on average), HREE, Rb, U, Th and heavily depleted V, Cr, Co, Ni, as well as Ti-Y, Nb-Ta, Zr, Sr, P and Ba, to be commonly corundum normative (av C -- 1.44). The Shangyou granites with higher 87Sr/86Sr ratios (0.707126-0.712186), ENd(t) values (-7.29 to -10.22) and (tDM) values (1.52-1.63 Ga), which are considered to result from partial melting of continental crust metamorphic sedimentary rocks with relatively low of crust maturation degree corresponding to the Middle Proterozoic, to have some possible contributions of mantle-derived components. The Shangyou granites are regarded as post-collision granites, which were formed in a transitional tectonic setting from compression to extension in the Middle Ordovician period after the Yangtze plate was subducted beneath the Cathaysian plate. The Ar-Ar total ages of K-feldspar and biotite are 292.1 Ma and 295.5 Ma respectively, which have recorded information of a late-stage thermal alteration event.
基金supported by Zhejiang-Fujian Songzheng ore survey project (Project Number 1212011120882)Research Demonstration Project of Copper Polymetallic Ore (Project Number 12120114002601)
文摘1 Introduction Tieshan Syenite crosses between Dongfeng and Zhangyuan’an in Zhenghe of Fujian province,occurs in the direction of 42°,Total length 8500m,width 600-800m and its Area of about 39km2.Outcrops of the mass are
基金Supported by the National Natural Science Foundation of China(41802127,U1762217)China National Science and Technology Major Project(2016ZX05006-003)。
文摘The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport of slide and slump,fluid transport of debris flow and turbidity currents are driven by gravity in deep-water lacustrine environment.The transformation between debris flow and turbidity current,and the transformation of turbidity current between supercritical and subcritical conditions are the main dynamic mechanisms of gravity flow deposits in a lake basin.The erosion of supercritical turbidity current controls the formation of gravity-flow channel.Debris flow deposition gives rise to tongue shape lobe rather than channel.Deep-water gravity flow deposits are of two origins,intrabasinal and extrabasinal.Intrabasinal gravity flow deposits occur as single tongue-shape lobe or fan of stacking multiple lobes.Extrabasinal gravity-flow deposits occur as sublacustrine fan with channel or single channel sand body.However,the nearshore subaqueous fan is characterized by fan of stacking multiple tongue shape lobes without channel.The differential diagenesis caused by differentiation in the nearshore subaqueous fan facies belt results in the formation of diagenetic trap.The extrabasinal gravity flow deposits are one of the important reasons for the abundant deep-water sand bodies in a lake basin.Slide mass-transport deposits form a very important type of lithologic trap near the delta front often ignored.The fine-grained sediment caused by flow transformation is the potential"sweet spot"of shale oil and gas.
基金financially supported by the National Nature Science Foundation of China(grants No.41340024 and 41602209)
文摘Objective The Great Xing'an Range is located in the eastern section of Central Asian Orogenic Belt(CAOB).As a superposed position of multiple tectonic domains,its structural evoIlution has always been a focused issue of geological research.
基金supported by the National Department Public Benefit Research Foundation of China(grant No.201211077)National Natural Science Foundation of China(Grant No.40802033)
文摘The eolian deposits distributed in the river valleys in the eastern margin of the Tibetan Plateau (TP) are very useful in neotectonic and paleoclimatic studies. Firstly, the climate in the eastern margin of the TP is mainly controlled by the Indian summer monsoon, and detailed studies on the loess-paleosol sequences in this region can provide valuable terrestrial evidence of past changes in the Indian summer monsoon. Secondly, the river terraces in the eastern margin of the TP are considered to be a sensitive recorder of neotectonism to reflect the timing and amplitude of the TP uplift.
基金supported by the National Key R&D Program of China (grant No. 2016YFC0600405)the National Natural Science Foundation of China (grants No. 41672079 and 41372085)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant No. XDB1803206)
文摘Objective The Yangbin porphyry tin deposit in Taishun County of Zhejiang Province is one of the few porphyry-type tin deposits in South China, which is located in the middle portion of the Mesozoic volcanic active belt on the southeastern coast of China. The Yangbin granite porphyry is closely related to the tin mineralization in this region. Based on petrologic and Sr-Nd-Pb isotopic
基金financially supported by grants from the Commonweal Project from the Ministry of Land and Resources (No.201511015)China Geological Survey (No.DD2016027-2)
文摘1 Introduction The Longgen Lead-Zinc deposit is located in the southern Gangdise-Nyainqentantanglha plate and belongs to the western section of the Nyainqentantanglha copper-lead-zinc-silver metallogenic belt.In this paper,
基金supported by the Critical Research and Development Plan of the People’s Republic of China(Deep Resources Exploration and Exploitation Project)(grant No.2016YFC0600305)the National Natural Science Foundation of China(grant No.41602103)+1 种基金the program of Yunnan Gold&Mineral Group Co.,Ltd Program(Metallogenic Regularity and Minerogenetic Series Research of Gold Polymetallic Deposits in West Yunnan Province,China)Geological Survey Program(grant No.DD20160124)
文摘Objective Located near the intersection of Yangtze craton, Tibet- Sanjiang orogen and Songpan-Ganzi orogen of Northwest Yunnan Province, the Mahuaping deposit is a unique large -scale tungsten-beryllium-fluorite ore deposit ever discovered in this area. In recent years, many studies have been carried out in Sanjiang Tethyan metallogenic belt and aforementioned adjacent regions. To date, however, little attention has been paid to this deposit, for example, the geochronology of Mahuaping W-Be deposit still remains unsolved. In this study, we have pioneered research about muscovite 40Ar-39Ar age to better understand the geochronology of the Mahuaping W-Be deposit.
基金supported by the China Geological Survey project(grant No.1212011120623)
文摘Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that the ELIP age, duration, scale and generation mechanism are still controversial. Among those scientific topics, some scholars suggest that ELIP is an example of up-doming prior to LIP formation, which was evidenced by: (1) The thickness of the Yangxin Formation (P^v) limestone unit, which lies directly beneath ELIP, reduces from the center of erosional area to the outer edge. (2) Paleo-karst surfaces are present. (3) The clastic rocks of alluvial fan deposits, from the eroded materials in the maximum uplifted area, developed surrounding the inner zone. However, other scholars urge that those so-called "alluvial fan" deposits are "hydromagmatic deposits", erupted or emplaced at or near sea level, and conclude that there was no pre-emptive uplift in ELIP. In order to constrain the above-mentioned scientific issue, we conducted detailed field geological investigations and systematically measured geological sections to provide new evidence by using sedimentary data.
基金supported by the Innovation driven project of Central South University (2015CX008)
文摘1 Introduction Granitoid magmas have been widely used as a natural probe for tracing the crustal evolution process(Martin et al.,2005).Mesozoic granitoids are widespread in the Dabie
文摘1 Introduction Santanghu Basin is located between the Armantai and Karamaili suture zone,at the junction of the Siberia,Kazakhstan and Tarim plates(Chen and Jahn,2004;Xiao et al.,2008).As an important part of the Central Asian
文摘An important Paleoproterozoic mobile belt event took place in the North China Craton(NCC),termed the Hutuo Movement.This has been interpreted as a cratonic reworking event with rifting-subduction-collision
基金supported by the National Key Research and Development Project of China (project 2016YFC0600304)the National Key Project on Basic Research of China (project 2015CB452604)the Strategic Priority Re-search Program (B) of the Chinese Academy of Sciences (project XDB03010301)
文摘The Himalayan leucograite, which is typical production of continent-continent collision orogenic belt, has become a research hotspot of the Tibetan Plateau. The research on the leucogranite would help to verify and improve the continent-continent collision orogenic theory. (Huang et al., 2017; Fig. la). Previous studies show the Himalayan leucogranite was mainly melted from crust materials (Guo and Wilson, 2012). But it remains controversial for the formation model as to whether it formed from gathering of dikes or diaper of deep magma chambers.
文摘The southern Anhui metamorphic terrane is traditionally regarded as a part of middle-lateProterozoic "Jiangnan Old Land". Based on the occurrence of palynomorphsAsperatopsophosphaera sp., Trachysphaeridium sp. and Nucellosphaeridium sp. (late
基金supported by the National Natural Science Foundation of China(grants No.40599420,40872114 and 41140028)the National Basic Research Program of China(grant No.2010CB833400)+1 种基金the Central University Research Foundation(grant No.310827152014)the State Key Laboratory of Loess and Quaternary Geology
文摘The Qinghai Lake in North China is the largest interior plateau lake in Central Asia, and is sensitive to climate change and the environmental effects of Tibetan Plateau uplift. An almost continuous 626 m long sediment core was drilled in an in-filled part of the southern lake basin in the Scientific Drilling at Qinghai Lake.
文摘A total of 1 264 sulfur isotopic values for modern seafloor hydrothermel sediments from different hydrothermal fields have been collected.On this basis,combining our sulfur isotpic data for surface hydrothermal sediments from the Jade hydrohtermal field in the Okinawa Trough and the TAG hydrothermal field in the Mid-Atlantic Ridge,respectively,and comparing the sulfur isotopic compositions and analyzing their sources of sulfur in seafloor hydrothermal sediments from different geologic-tectonic setting,the results show that:(1) sulfur isotopic values of sulfides and sulfates in modern seafloor hydrothermal sediments are concentrated in a narrow range,δ 34S values of sulfides vary from 1×10 -3 to 9×10 -3,with a mean of 4.5×10 -3 (n=1042),δ 34S values of sulfates vary from 19×10 -3 to 24×10 -3,with a mean of 21.3×10 -3(n=217);(2) comparing the sulfur isotopic compositions of hydrothermal sediments from the sediment-hosted hydrothermal fields,the range of sulfur isotopic values for hydrothermal sediments from the sediment-free hydrothermal fields is narrow relatively;(3) the differences of sulfur isotopic compositions in sulfides from different hydrothermal fields show the differences in the sources of sulfur.The sulfur of hydrothermal sulfides in the sediment-free mid-ocean ridges is mainly from mid- ocean ridge basalt,and partially from the reduced seawater sulfate,and it is the result of partially reduced seawater sulfate mixed with basaltic sulfur.In the sediment-hosted mid-ocean ridges and the back-arc basins,the volcanics,the sediments and the organic matters also can offer their sulfur for forming hydrothermal sulfides;(4)the variations of sulfur isotopic compositions and the different sources of sulfur for hydrothermal sediments may be attributed to the various physical-chemical characteristics of hydrothermal fluids,the magmatic evolution and the different geologic-tectonic settings of seafloor hydrothermal systems.
基金supported by the National Natural Science Foundation of China (Grant No. 40972041)
文摘Age and nature of the Budate Group in the Hailar Basin are of great significance in studying the evolution of the Hailar Basin and the Xing'an-Mongolian Orogenic Belt(XMOB).Zircon U-Pb ages of eight volcanic rocks from the Budate Group and two basement granites in the Hailar Basin were reported in this study.The dating results indicated that the formation of these volcanic rocks was consistent with the emplacement of Late Paleozoic basement granite in age(356-290 Ma),i.e.,Early Carboniferous to Early Permian rather than Early Mesozoic.Combined with regional geology,it was concluded that the Budate Group is the component of the basement of the Hailar Basin,and these volcanic rocks were formed at an active continental margin,which is related to the closure of the Hegen Mountains suture zone.The captured Neoproterozoic zircons(814-873 Ma) were probably derived from the Neoproterozoic basement materials in the Ergun Block,implying the close genetic relationships between the Ergun Block(including the Hailar Basin) and the Siberian Block.
基金the National Natural Science Foundation of China (Grant Nos. 40172053 , 49972051) the Important Direction Project of Knowledge Innovation in Resource and Environment Fields of the Chinese Academy of Sciences (Grant No. KZCX3-SW-128) the 2002 Foundation of State Key Laboratory of Gas Geochemistry.
文摘The values of the helium isotopes in the inclusions of the Ordovician reservoir rocks in the Kongxi buried hill belt in the Huanghua depression were first measured and the source of helium and its geological significance were investigated in comparison with those of the helium isotopes in the conclusions in the Ordovician rocks in the Ordos basin and the Tarim basin. The input of the mantle-derived helium into the inclusions in the carbonate reservoir rocks was found from the Konggu 3 well, the Konggu 4 well, and the Konggu 7 well in the Kongxi buried hill belt. The 3He/4He and R/Ra in the conclusions in the Ordovician oil-bearing reservoir rocks in the Konggu 7 well average 2.54×10-6(3) (sample quantity, the same below) and 1.82(3), respectively. The percent of the mantle-derived helium in the inclusions of the reservoir rocks in the Konggu 7 well reaches up to an average of 23.0%(3). The age of the contribution of the mantle-derived helium to the inclusions in the Kongxi buried hill belt is in the Late Triassic or the Early Tertiary. The finding of the mantle-derived helium shows that the interaction of the deep crust with mantle and the activity of deep faults occurred, the terrestrial heat flow value was high, and mantle-derived inorganic gas pools might be formed in the Kongxi buried hill belt. The finding of the mantle-derived helium in the inclusions of oil-bearing reservoir rocks also provides a new way for researching the activity of mantle-derived matter and its associated geological problems.