The finite_element_displacement_perturbation method (FEDPM)for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes (Ⅰ) was e...The finite_element_displacement_perturbation method (FEDPM)for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes (Ⅰ) was employed to calculate the stress distributions and the stiffness of the bellows. Firstly, by applying the first_order perturbation solution (the linear solution)of the FEDPM to the bellows, the obtained results were compared with those of the general solution and the initial parameter integration solution proposed by the present authors earlier, as well as of the experiments and the FEA by others.It is shown that the FEDPM is with good precision and reliability, and as it was pointed out in (Ⅰ) the abrupt changes of the meridian curvature of bellows would not affect the use of the usual straight element. Then the nonlinear behaviors of the bellows were discussed. As expected, the nonlinear effects mainly come from the bellows ring plate,and the wider the ring plate is, the stronger the nonlinear effects are. Contrarily, the vanishing of the ring plate, like the C_shaped bellows, the nonlinear effects almost vanish. In addition, when the pure bending moments act on the bellows, each convolution has the same stress distributions calculated by the linear solution and other linear theories, but by the present nonlinear solution they vary with respect to the convolutions of the bellows. Yet for most bellows, the linear solutions are valid in practice.展开更多
In order to analyze bellows effectively and practically, the finite_element_displacement_perturbation method (FEDPM) is proposed for the geometric nonlinear behaviors of shells of revolution subjected to pure bending ...In order to analyze bellows effectively and practically, the finite_element_displacement_perturbation method (FEDPM) is proposed for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes. The formulations are mainly based upon the idea of perturba_ tion that the nodal displacement vector and the nodal force vector of each finite element are expanded by taking root_mean_square value of circumferential strains of the shells as a perturbation parameter. The load steps and the iteration times are not as arbitrary and unpredictable as in usual nonlinear analysis. Instead, there are certain relations between the load steps and the displacement increments, and no need of iteration for each load step. Besides, in the formulations, the shell is idealized into a series of conical frusta for the convenience of practice, Sander's nonlinear geometric equations of moderate small rotation are used, and the shell made of more than one material ply is also considered.展开更多
Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of bette...Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically展开更多
Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I...Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.展开更多
Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of linear problems are difficult to be managed by the theoreti...Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of linear problems are difficult to be managed by the theoretical methods. The present study aims to use the developed method, the random microstructure finite element method, to deal with these nonlinear problems. In this paper, the random microstructure finite element method is used to deal with all three kinds of nonlinear property problems of composite materials. The analyzed results suggest the influences of the nonlinear phenomena on the effective properties of composite materials are significant and the random microstructure finite element method is an effective tool to investigate the nonlinear problems.展开更多
Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such a...Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such as lateral shear deformation, warp generated by nonuni- form torsion and second-order shear stress, coupling of flexure and torsion, and large displacement with small strain. With an additional internal node in the element, the element stiffness matrix is deduced by incremental virtual work in updated Lagrangian (UL) formulation. Numerical examples demonstrate that the presented model well describes the geometrically nonlinear property of spatial thin-walled beams.展开更多
This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two node...This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two nodes is briefly presented on the basis of the total Lagrangian formulation. The static and dynamic equilibrium equations of mooring lines are established. An incremental-iterative method is used to determine the initial static equilibrium state of cable systems under the action of self weights, buoyancy and current. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method, and examine the effect of various parameters.展开更多
In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element...In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM.展开更多
Analysis of slender beam structures in a three-dimensional space is widely applicable in mechanical and civil engineering. This paper presents a new procedure to determine the reference coordinate system of a beam ele...Analysis of slender beam structures in a three-dimensional space is widely applicable in mechanical and civil engineering. This paper presents a new procedure to determine the reference coordinate system of a beam element under large rotation and elastic deformation based on a newly introduced physical concept: the zero twist sectional condition, which means that a non-twisted section between two nodes always exists and this section can reasonably be regarded as a reference coordinate system to calculate the internal element forces. This method can avoid the disagreement of the reference coordinates which might occur under large spatial rotations and deformations. Numerical examples given in the paper prove that this procedure guarantees the numerical exactness of the inherent formulation and improves the numerical efficiency, especially under large spatial rotations.展开更多
In this paper, on the basis of the incremental Reissner variational principle.a nonlinear finite element analysis has been accomplished and a formulation of hybrid stress element has been presented for incompressible ...In this paper, on the basis of the incremental Reissner variational principle.a nonlinear finite element analysis has been accomplished and a formulation of hybrid stress element has been presented for incompressible Mooney rubber-like materials. The corrected terms of the non-equilibrium force and the incompressibility deviation are considered in the formulation. The computed values of numerical example agree very closely with the exact solution.展开更多
Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, t...Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, the numerical results were given by nonlinear finite element analysis. Results The numerical results of the shape of the active plastic sone, the angular distribution of stresseses and Clack tip opening displacement (CTOD) in the vicinity at the hp of the steadily groWing CraCk are determined. Conclusion The comparison between the numerical results given by the present wort and those given by analytic asymptotic analysis shows that the present work reached a very high accuracy.展开更多
A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation in...A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation instability. The problems of mesh sensitivity and convergence, and the efficiency of the proposed nonlinear FE technique have been assessed to illustrate the versatility and potential accuracy of the said technique. The nonlinear electromechanical behavior, such as the hysteresis loops and butterfly curves, of ferroelectric ceramics subjected to both a uniform electric field and a point electric potential has been studied numerically. The results obtained are in good agreement with those of the corresponding theoretical and experimental analyses. Furthermore, the electromechanical coupling fields near (a) the boundary of a circular hole, (b) the boundary of an elliptic hole and (c) the tip of a crack, have been analyzed using the proposed nonlinear finite element method (FEM). The proposed nonlinear electromechanically coupled FEM is useful for the analysis of domain switching, deformation and fracture of ferroelectric ceramics.展开更多
This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems duri...This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision.The initial discussion revolves around the stress and strain of large deformation during a collision, followedby explanations of the fundamental finite element solution method for addressing such issues. The hourglassmode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailedand implemented within the finite element framework. The paper further investigates the dynamic responseand failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete modelin ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmedthrough comparisons with the node-sharing algorithm and system energy relations. Experimental parameterswere varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrupreinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did notsignificantly reduce lateral displacement when considering strain rate effects. The study also explores materialnonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstratedthrough an elastic rod impact case study. The paper proposes a damage criterion based on the residual axialload-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation betweendamage degree hammer mass and initial velocity. The results, validated through comparison with theoreticaland analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancingRC structures’ resilience under dynamic stress.展开更多
The finite element equations considering the geometrical nonlinearity of piezoelectric smart structures are derived based on the total Lagrange method under the assumption of weak coupling between electricity and mech...The finite element equations considering the geometrical nonlinearity of piezoelectric smart structures are derived based on the total Lagrange method under the assumption of weak coupling between electricity and mechanics. Buckling and post-buckling of piezoelectric-plate with various boundary conditions are investigated. The calculated results show that piezoelectric effects and external voltage can hardly affect the buckling and post-bucking characteristics of piezoelectric-plate under uniaxial pressure while the buckling caused by displacement in-plane has much to do with the electric field.展开更多
In order to improve the office paper feeder design, and eliminate paper jam fault in running office equipment, the static deformation and dynamic response of paper were analyzed by use of the Finite Element Method (FE...In order to improve the office paper feeder design, and eliminate paper jam fault in running office equipment, the static deformation and dynamic response of paper were analyzed by use of the Finite Element Method (FEM). In the analysis, the three nodes mangle plate and shell element were employed, and finite element incremental formulations were derived on the basis of Updated Lagrangian (U.L) description. The newmark method was used to analyze the transient response of paper. All the results calculated in this article coincide with those by experiments.展开更多
Based on the consistent symrnetrizable equilibrated (CSE) corotational formulation, a linear triangular flat thin shell element with 3 nodes and 18~ of freedom, constructed by combination of the optimal membrane ele...Based on the consistent symrnetrizable equilibrated (CSE) corotational formulation, a linear triangular flat thin shell element with 3 nodes and 18~ of freedom, constructed by combination of the optimal membrane element and discrete Kirchhoff trian- gle (DKT) bending plate element, was extended to the geometric nonlinear analysis of thin shells with large rotation and small strain. Through derivation of the consistent tangent stiffness matrix and internal force vector, the corotational nonlinear finite element equations were established. The nonlinear equations were solved by using the Newton-Raphson iteration algorithm combined with an automatic load controlled technology. Three typical case studies, i.e., the slit annular thin plate, top opened hemispherical shell and cylindrical shell, validated the accuracy of the formulation established in this paper.展开更多
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static an...Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.展开更多
For material nonlinear problem,elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flex...For material nonlinear problem,elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.展开更多
A new kind of super parametric finite elements for geometric nonlinear analysis of plates and shells is presented.Besides the nodes on the middle surface, additional virtual nodes are used to determine the normal to ...A new kind of super parametric finite elements for geometric nonlinear analysis of plates and shells is presented.Besides the nodes on the middle surface, additional virtual nodes are used to determine the normal to the middle surface.There are three displacement d.o.f.for each node of the element, and two transverse shear strains are taken as additional independent d.o.f.for each node on the middle surface.Therefore, the element is suitable for large rotation analysis of plates and shells. It can also be easily applied to the analysis of laminated and sandwich shells and plates.Numerical examples are given to show the accuracy and efficiency of the element.展开更多
Based on the actual measured well depth, azimuth and oblique angles, a novel interpolation method to obtain the well axis is developed. The initial stress of drill string at the reference state consistent with well ax...Based on the actual measured well depth, azimuth and oblique angles, a novel interpolation method to obtain the well axis is developed. The initial stress of drill string at the reference state consistent with well axis can be obtained from the curvature and the tortuosity of well axis. By using the principle of virtual work, the formula to compute the equivalent load vector of the initial stress was derived. In the derivation,the natural (curvilinear) coordinate system was adopted since both the curvature and the tortuosity were generally not zero. A set of displacement functions fully reflecting the rigid body modes was used. Some basic concepts in the finite element analysis of drill string were clarified. It is hoped that the proposed method would offer a theoretical basis for handling the geometric nonlinear problem of the drill string in a 3-D larg edisplacement wellbore.展开更多
文摘The finite_element_displacement_perturbation method (FEDPM)for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes (Ⅰ) was employed to calculate the stress distributions and the stiffness of the bellows. Firstly, by applying the first_order perturbation solution (the linear solution)of the FEDPM to the bellows, the obtained results were compared with those of the general solution and the initial parameter integration solution proposed by the present authors earlier, as well as of the experiments and the FEA by others.It is shown that the FEDPM is with good precision and reliability, and as it was pointed out in (Ⅰ) the abrupt changes of the meridian curvature of bellows would not affect the use of the usual straight element. Then the nonlinear behaviors of the bellows were discussed. As expected, the nonlinear effects mainly come from the bellows ring plate,and the wider the ring plate is, the stronger the nonlinear effects are. Contrarily, the vanishing of the ring plate, like the C_shaped bellows, the nonlinear effects almost vanish. In addition, when the pure bending moments act on the bellows, each convolution has the same stress distributions calculated by the linear solution and other linear theories, but by the present nonlinear solution they vary with respect to the convolutions of the bellows. Yet for most bellows, the linear solutions are valid in practice.
文摘In order to analyze bellows effectively and practically, the finite_element_displacement_perturbation method (FEDPM) is proposed for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes. The formulations are mainly based upon the idea of perturba_ tion that the nodal displacement vector and the nodal force vector of each finite element are expanded by taking root_mean_square value of circumferential strains of the shells as a perturbation parameter. The load steps and the iteration times are not as arbitrary and unpredictable as in usual nonlinear analysis. Instead, there are certain relations between the load steps and the displacement increments, and no need of iteration for each load step. Besides, in the formulations, the shell is idealized into a series of conical frusta for the convenience of practice, Sander's nonlinear geometric equations of moderate small rotation are used, and the shell made of more than one material ply is also considered.
基金supported by The HongKong Polytechnic University Research Grants(No.1-BB81)grants from National Natural Science Foundation of China,Nos.10872078 and 10832012
文摘Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically
基金supported by he National Natural Science Foundation of China (No.10872081)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No.111005)
文摘Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.
基金This work is supported by the National Natural Science Foundation of China under the Grant 19772037 and 19902014
文摘Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of linear problems are difficult to be managed by the theoretical methods. The present study aims to use the developed method, the random microstructure finite element method, to deal with these nonlinear problems. In this paper, the random microstructure finite element method is used to deal with all three kinds of nonlinear property problems of composite materials. The analyzed results suggest the influences of the nonlinear phenomena on the effective properties of composite materials are significant and the random microstructure finite element method is an effective tool to investigate the nonlinear problems.
基金supported by the National Science Fund for Distinguished Young Scholars (No. 50725826).
文摘Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such as lateral shear deformation, warp generated by nonuni- form torsion and second-order shear stress, coupling of flexure and torsion, and large displacement with small strain. With an additional internal node in the element, the element stiffness matrix is deduced by incremental virtual work in updated Lagrangian (UL) formulation. Numerical examples demonstrate that the presented model well describes the geometrically nonlinear property of spatial thin-walled beams.
基金supported by the National Natural Science Foundation of China (Grant No.11072052)the National High Technology Research and Development Program of China (863 Program,Grant No.2006AA09A109-3)
文摘This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two nodes is briefly presented on the basis of the total Lagrangian formulation. The static and dynamic equilibrium equations of mooring lines are established. An incremental-iterative method is used to determine the initial static equilibrium state of cable systems under the action of self weights, buoyancy and current. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method, and examine the effect of various parameters.
文摘In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM.
文摘Analysis of slender beam structures in a three-dimensional space is widely applicable in mechanical and civil engineering. This paper presents a new procedure to determine the reference coordinate system of a beam element under large rotation and elastic deformation based on a newly introduced physical concept: the zero twist sectional condition, which means that a non-twisted section between two nodes always exists and this section can reasonably be regarded as a reference coordinate system to calculate the internal element forces. This method can avoid the disagreement of the reference coordinates which might occur under large spatial rotations and deformations. Numerical examples given in the paper prove that this procedure guarantees the numerical exactness of the inherent formulation and improves the numerical efficiency, especially under large spatial rotations.
文摘In this paper, on the basis of the incremental Reissner variational principle.a nonlinear finite element analysis has been accomplished and a formulation of hybrid stress element has been presented for incompressible Mooney rubber-like materials. The corrected terms of the non-equilibrium force and the incompressibility deviation are considered in the formulation. The computed values of numerical example agree very closely with the exact solution.
文摘Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, the numerical results were given by nonlinear finite element analysis. Results The numerical results of the shape of the active plastic sone, the angular distribution of stresseses and Clack tip opening displacement (CTOD) in the vicinity at the hp of the steadily groWing CraCk are determined. Conclusion The comparison between the numerical results given by the present wort and those given by analytic asymptotic analysis shows that the present work reached a very high accuracy.
基金The project supported by the National Natural Science Foundation of China(10025209,10132010 90208002)the Research Grants of the Council of the Hong Kong Special Administrative Region,China(HKU7086/02E)the Key Grant Project of the Chinese Ministr
文摘A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation instability. The problems of mesh sensitivity and convergence, and the efficiency of the proposed nonlinear FE technique have been assessed to illustrate the versatility and potential accuracy of the said technique. The nonlinear electromechanical behavior, such as the hysteresis loops and butterfly curves, of ferroelectric ceramics subjected to both a uniform electric field and a point electric potential has been studied numerically. The results obtained are in good agreement with those of the corresponding theoretical and experimental analyses. Furthermore, the electromechanical coupling fields near (a) the boundary of a circular hole, (b) the boundary of an elliptic hole and (c) the tip of a crack, have been analyzed using the proposed nonlinear finite element method (FEM). The proposed nonlinear electromechanically coupled FEM is useful for the analysis of domain switching, deformation and fracture of ferroelectric ceramics.
基金the authority of the National Natural Science Foundation of China(Grant Nos.52178168 and 51378427)for financing this research work and several ongoing research projects related to structural impact performance.
文摘This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision.The initial discussion revolves around the stress and strain of large deformation during a collision, followedby explanations of the fundamental finite element solution method for addressing such issues. The hourglassmode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailedand implemented within the finite element framework. The paper further investigates the dynamic responseand failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete modelin ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmedthrough comparisons with the node-sharing algorithm and system energy relations. Experimental parameterswere varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrupreinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did notsignificantly reduce lateral displacement when considering strain rate effects. The study also explores materialnonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstratedthrough an elastic rod impact case study. The paper proposes a damage criterion based on the residual axialload-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation betweendamage degree hammer mass and initial velocity. The results, validated through comparison with theoreticaland analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancingRC structures’ resilience under dynamic stress.
基金the National Natural Science Foundation of China(No.59635140)
文摘The finite element equations considering the geometrical nonlinearity of piezoelectric smart structures are derived based on the total Lagrange method under the assumption of weak coupling between electricity and mechanics. Buckling and post-buckling of piezoelectric-plate with various boundary conditions are investigated. The calculated results show that piezoelectric effects and external voltage can hardly affect the buckling and post-bucking characteristics of piezoelectric-plate under uniaxial pressure while the buckling caused by displacement in-plane has much to do with the electric field.
文摘In order to improve the office paper feeder design, and eliminate paper jam fault in running office equipment, the static deformation and dynamic response of paper were analyzed by use of the Finite Element Method (FEM). In the analysis, the three nodes mangle plate and shell element were employed, and finite element incremental formulations were derived on the basis of Updated Lagrangian (U.L) description. The newmark method was used to analyze the transient response of paper. All the results calculated in this article coincide with those by experiments.
基金supported by the National Natural Science Foundation of China (Grant No. 51075208)the Innovation Project for Graduate Students of Jiangsu Province (Grant No. CX07B-162z)the Fund for Innovative and Excellent Doctoral Dissertation of NUAA (Grant No.BCXJ07-01)
文摘Based on the consistent symrnetrizable equilibrated (CSE) corotational formulation, a linear triangular flat thin shell element with 3 nodes and 18~ of freedom, constructed by combination of the optimal membrane element and discrete Kirchhoff trian- gle (DKT) bending plate element, was extended to the geometric nonlinear analysis of thin shells with large rotation and small strain. Through derivation of the consistent tangent stiffness matrix and internal force vector, the corotational nonlinear finite element equations were established. The nonlinear equations were solved by using the Newton-Raphson iteration algorithm combined with an automatic load controlled technology. Three typical case studies, i.e., the slit annular thin plate, top opened hemispherical shell and cylindrical shell, validated the accuracy of the formulation established in this paper.
基金supported by the National Key Research and Development Program (No. 2016YFC0802301)the Shandong Province Science and Technology Major Project (No. 2015ZDZX04003)the Natural Science Foundation of Shandong Province (No. ZR2016GM06)
文摘Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.
基金Sponsored by the National Natural Science Foundation of China (Grant No.90815014 and 90715021)
文摘For material nonlinear problem,elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.
文摘A new kind of super parametric finite elements for geometric nonlinear analysis of plates and shells is presented.Besides the nodes on the middle surface, additional virtual nodes are used to determine the normal to the middle surface.There are three displacement d.o.f.for each node of the element, and two transverse shear strains are taken as additional independent d.o.f.for each node on the middle surface.Therefore, the element is suitable for large rotation analysis of plates and shells. It can also be easily applied to the analysis of laminated and sandwich shells and plates.Numerical examples are given to show the accuracy and efficiency of the element.
文摘Based on the actual measured well depth, azimuth and oblique angles, a novel interpolation method to obtain the well axis is developed. The initial stress of drill string at the reference state consistent with well axis can be obtained from the curvature and the tortuosity of well axis. By using the principle of virtual work, the formula to compute the equivalent load vector of the initial stress was derived. In the derivation,the natural (curvilinear) coordinate system was adopted since both the curvature and the tortuosity were generally not zero. A set of displacement functions fully reflecting the rigid body modes was used. Some basic concepts in the finite element analysis of drill string were clarified. It is hoped that the proposed method would offer a theoretical basis for handling the geometric nonlinear problem of the drill string in a 3-D larg edisplacement wellbore.