Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the...Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the curved beam.Based on exact nonlinear strain-displacement relation,virtual work principle is used to derive dynamic equations for a rotating curved beam,with the effects of axial extensibility,shear deformation and rotary inertia taken into account.The constant matrices are solved numerically utilizing the Gauss quadrature integration method.Newmark and Newton-Raphson iteration methods are adopted to solve the differential equations of the rigid-flexible coupling system.The present results are compared with those obtained by commercial programs to validate the present finite method.In order to further illustrate the convergence and efficiency characteristics of the present modeling and computation formulation,comparison of the results of the present formulation with those of the ADAMS software are made.Furthermore,the present results obtained from linear formulation are compared with those from nonlinear formulation,and the special dynamic characteristics of the curved beam are concluded by comparison with those of the straight beam.展开更多
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an inter...Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.展开更多
In this note we characterize the geometric facture of a (μ, r, k) - FES. Namely, for a C~μ triangular in- terpolation schcme with C^r vertex data, any angle of the macrotriangle must be divided into at least (μ + 1...In this note we characterize the geometric facture of a (μ, r, k) - FES. Namely, for a C~μ triangular in- terpolation schcme with C^r vertex data, any angle of the macrotriangle must be divided into at least (μ + 1)/ (r + 1 - μ) parts.展开更多
Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of bette...Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically展开更多
In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical featu...In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical features and the elements of 3D solid. Various modes based on different datum geometrical elements, such as vertex, curve, surface, and so on, are then designed for generating local refined mesh. With the guidance of the defmed criteria, different modes are automatically selected to apply on the appropriate datum objects to program the element size in the local special areas. As a result, the control information of element size is successfully programmed covering the entire domain based on the geometrical features of 3D solid. A new algorithm based on Delatmay triangulation is then developed for generating 3D adaptive finite element mesh, in which the element size is dynamically specified to catch the geometrical features and suitable tetrahedron facets are selected to locate interior nodes continuously. As a result, adaptive mesh with good-quality elements is generated. Examples show that the proposed method can be successfully applied to adaptive finite element mesh automatic generation based on the geometrical features of 3D solid.展开更多
Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator(SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature b...We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator(SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase(PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases.展开更多
Multi-pass slab vertical-horizontal (V-H) rolling process with variable edging roll shape have been simulated with explicit dynamic finite element method and updating geometric method. The distributions of plastic s...Multi-pass slab vertical-horizontal (V-H) rolling process with variable edging roll shape have been simulated with explicit dynamic finite element method and updating geometric method. The distributions of plastic strain contour in slab daring rolling process with different edging roll and under different rolling stage have been obtained. The results show that there exist two thin strain assembling zones in slab when the flat edging roll is used, and there just exist one strain assembling zone in slab when the edging roll with groove is used. And compared the deformation equality between flat edging roll and edging roll with groove, the lateris better than the former, which supplies the theory prove to the slab deformation distribution during V-H rolling process and is helpful for predicting the slab texture.展开更多
A neutrosophic number(NN)(d=μ+vI)can flexibly represent the indeterminate information corresponding to values/ranges of the indeterminacy I.Regarding the hybrid concept of intuitionistic fuzzy set(IFS)and NN,this stu...A neutrosophic number(NN)(d=μ+vI)can flexibly represent the indeterminate information corresponding to values/ranges of the indeterminacy I.Regarding the hybrid concept of intuitionistic fuzzy set(IFS)and NN,this study presents an orthopair indeterminate set(OIS),an orthopair indeterminate element weighted arithmetic averaging(OIEWAA)operator and an orthopair indeterminate element weighted geometric averaging(OIEWGA)operator to simplify and generalise the existing IFS and interval-valued IFS expressions and aggregation forms.Thus,a multiattribute decision making(DM)approach with indeterminate ranges of decision makers is developed based on the OIEWAA and OIEWGA operators and the score and accuracy functions of orthopair indeterminate elements in OIS setting.Finally,the proposed DM approach is applied to a multi-attribute DM example of manufacturing schemes(alternatives)in OIS setting to demonstrate the applicability and flexibility of the proposed DM approach in OIS setting.展开更多
基金supported by the National Natural Science Foundation of China(10872126)Research Fund for the Doctoral Program of Higher Education of China(20100073110007)
文摘Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the curved beam.Based on exact nonlinear strain-displacement relation,virtual work principle is used to derive dynamic equations for a rotating curved beam,with the effects of axial extensibility,shear deformation and rotary inertia taken into account.The constant matrices are solved numerically utilizing the Gauss quadrature integration method.Newmark and Newton-Raphson iteration methods are adopted to solve the differential equations of the rigid-flexible coupling system.The present results are compared with those obtained by commercial programs to validate the present finite method.In order to further illustrate the convergence and efficiency characteristics of the present modeling and computation formulation,comparison of the results of the present formulation with those of the ADAMS software are made.Furthermore,the present results obtained from linear formulation are compared with those from nonlinear formulation,and the special dynamic characteristics of the curved beam are concluded by comparison with those of the straight beam.
基金supported by the National Natural Science Foundation of China (50725826)Specific Research on Cable-reinforced Membranes with Super Span and Complex Single-shell Structures of Expo Axis (08dz0580303)Shanghai Postdoctoral Fund (10R21416200)
文摘Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.
文摘In this note we characterize the geometric facture of a (μ, r, k) - FES. Namely, for a C~μ triangular in- terpolation schcme with C^r vertex data, any angle of the macrotriangle must be divided into at least (μ + 1)/ (r + 1 - μ) parts.
基金supported by The HongKong Polytechnic University Research Grants(No.1-BB81)grants from National Natural Science Foundation of China,Nos.10872078 and 10832012
文摘Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically
基金This project is supported by Provincial Project Foundation of Science and Technology of Guangdong, China(No.2002104040101).
文摘In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical features and the elements of 3D solid. Various modes based on different datum geometrical elements, such as vertex, curve, surface, and so on, are then designed for generating local refined mesh. With the guidance of the defmed criteria, different modes are automatically selected to apply on the appropriate datum objects to program the element size in the local special areas. As a result, the control information of element size is successfully programmed covering the entire domain based on the geometrical features of 3D solid. A new algorithm based on Delatmay triangulation is then developed for generating 3D adaptive finite element mesh, in which the element size is dynamically specified to catch the geometrical features and suitable tetrahedron facets are selected to locate interior nodes continuously. As a result, adaptive mesh with good-quality elements is generated. Examples show that the proposed method can be successfully applied to adaptive finite element mesh automatic generation based on the geometrical features of 3D solid.
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
基金Project supported by the National Natural Science Foundation of China(Grant No.11547017)the Hubei Engineering University Research Foundation,China(Grant No.z2014001)the Natural Science Foundation of Hubei Province,China(Grant No.2014CFB578)
文摘We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator(SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase(PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases.
文摘Multi-pass slab vertical-horizontal (V-H) rolling process with variable edging roll shape have been simulated with explicit dynamic finite element method and updating geometric method. The distributions of plastic strain contour in slab daring rolling process with different edging roll and under different rolling stage have been obtained. The results show that there exist two thin strain assembling zones in slab when the flat edging roll is used, and there just exist one strain assembling zone in slab when the edging roll with groove is used. And compared the deformation equality between flat edging roll and edging roll with groove, the lateris better than the former, which supplies the theory prove to the slab deformation distribution during V-H rolling process and is helpful for predicting the slab texture.
文摘A neutrosophic number(NN)(d=μ+vI)can flexibly represent the indeterminate information corresponding to values/ranges of the indeterminacy I.Regarding the hybrid concept of intuitionistic fuzzy set(IFS)and NN,this study presents an orthopair indeterminate set(OIS),an orthopair indeterminate element weighted arithmetic averaging(OIEWAA)operator and an orthopair indeterminate element weighted geometric averaging(OIEWGA)operator to simplify and generalise the existing IFS and interval-valued IFS expressions and aggregation forms.Thus,a multiattribute decision making(DM)approach with indeterminate ranges of decision makers is developed based on the OIEWAA and OIEWGA operators and the score and accuracy functions of orthopair indeterminate elements in OIS setting.Finally,the proposed DM approach is applied to a multi-attribute DM example of manufacturing schemes(alternatives)in OIS setting to demonstrate the applicability and flexibility of the proposed DM approach in OIS setting.