Let P be arbitrary a point inside the simplex A in the n-dimensional Eucidean spaceEn . Let di be the distance from the point P to the correspondent hyperplane of vertex Ai of A.Let r denote the inradius of A. In this...Let P be arbitrary a point inside the simplex A in the n-dimensional Eucidean spaceEn . Let di be the distance from the point P to the correspondent hyperplane of vertex Ai of A.Let r denote the inradius of A. In this paper,we obtain a very strong negative eaponent geometric inequatity of contact with d1,d2,...,dn+1 and r.展开更多
Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric in...Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric inequalities involvingn-dimensional simplex in n-dimensional Euclidean space En and several matrix inequalitiesare established to show the applications of our results.展开更多
In this paper, we obtain some geometric inequalities on the radii of inscribed sphere of a simplex and its subsimplex, as particular case of this paper, we obtain some main results of [1].
This article establishes several new geometric inequalities, which refer to the lengthes of the edges of a simplex and interior point, height, lateral area, and the circumradius of another simplex.
The mid-facet of a simplex in n-dimensional Euclidean space which was introduced quite recently is an important geometric element. An analytic expression for the mid-facet area of a simplex is firstly given. In order...The mid-facet of a simplex in n-dimensional Euclidean space which was introduced quite recently is an important geometric element. An analytic expression for the mid-facet area of a simplex is firstly given. In order to obtain the expression,the exterior differential method was presented. Furthermore, the properties of the mid-facets of a simplex analogous to median lines of a triangle (such as for all mid-facets of a simplex,there exists another simplex such that its edge-lengths equal to these mid-facets area respectively, and all of the mid-facets of a simplex have a common point) were proved. Finally, by applying the analytic expression, a number of inequalities which combine edge-lengths, circumradius, median line, bisection area and facet area with the mid-facet area for a simplex were established.展开更多
Some related problems of two n-dimensional simplices which are on an(n- 1)-dimensional hypersphere are investigated and a sine theorem of the k-dimensional mixed vertex angles which are defined in this paper is given....Some related problems of two n-dimensional simplices which are on an(n- 1)-dimensional hypersphere are investigated and a sine theorem of the k-dimensional mixed vertex angles which are defined in this paper is given. This result is a generalization of the sine theorem established. By using the generalized sine theorem, we present some new interesting geometric inequalities involving the k-dimensional vertex angles of each n-simplex and the k-dimensional mixed vertex angle of two n-simplices. These results can improve some recent results.展开更多
By virtue of Cauchy’s integral formula in the theory of complex functions,the authors establish an integral representation for the weighted geometric mean,apply this newly established integral representation to show ...By virtue of Cauchy’s integral formula in the theory of complex functions,the authors establish an integral representation for the weighted geometric mean,apply this newly established integral representation to show that the weighted geometric mean is a complete Bernstein function,and find a new proof of the well-known weighted arithmetic-geometric mean inequality.展开更多
After half a century research, the mechanical theorem proving in geometries has become an active research topic in the automated reasoning field. This review involves three approaches on automated generating readable ...After half a century research, the mechanical theorem proving in geometries has become an active research topic in the automated reasoning field. This review involves three approaches on automated generating readable machine proofs for geometry theorems which include search methods, coordinate-free methods, and formal logic methods. Some critical issues about these approaches are also discussed. Furthermore, the authors propose three further research directions for the readable machine proofs for geometry theorems, including geometry inequalities, intelligent geometry softwares and machine learning.展开更多
文摘Let P be arbitrary a point inside the simplex A in the n-dimensional Eucidean spaceEn . Let di be the distance from the point P to the correspondent hyperplane of vertex Ai of A.Let r denote the inradius of A. In this paper,we obtain a very strong negative eaponent geometric inequatity of contact with d1,d2,...,dn+1 and r.
基金The Doctoral Programs Foundation(20113401110009) of Education Ministry of Chinathe Natural Science Research Project(2012kj11) of Hefei Normal Universitythe NSF(KJ2013A220) of Anhui Province
文摘Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric inequalities involvingn-dimensional simplex in n-dimensional Euclidean space En and several matrix inequalitiesare established to show the applications of our results.
基金Supported by the First Class Key Course of Mathematics of Jiangsu Province(SXKYA1010)
文摘In this paper, we obtain some geometric inequalities on the radii of inscribed sphere of a simplex and its subsimplex, as particular case of this paper, we obtain some main results of [1].
基金Supported by the General Project of Education Department of Hunan Province(09C470)
文摘This article establishes several new geometric inequalities, which refer to the lengthes of the edges of a simplex and interior point, height, lateral area, and the circumradius of another simplex.
文摘The mid-facet of a simplex in n-dimensional Euclidean space which was introduced quite recently is an important geometric element. An analytic expression for the mid-facet area of a simplex is firstly given. In order to obtain the expression,the exterior differential method was presented. Furthermore, the properties of the mid-facets of a simplex analogous to median lines of a triangle (such as for all mid-facets of a simplex,there exists another simplex such that its edge-lengths equal to these mid-facets area respectively, and all of the mid-facets of a simplex have a common point) were proved. Finally, by applying the analytic expression, a number of inequalities which combine edge-lengths, circumradius, median line, bisection area and facet area with the mid-facet area for a simplex were established.
基金Supported by the Doctoral Programs Foundation of Education Ministry of China(2011 3401110009) Supported by the Universities Natural Science Foundation of Anhui Province(KJ2013A220) Supported by the Natural Science Research Project of Hefei Normal University(2012kj11)
文摘Some related problems of two n-dimensional simplices which are on an(n- 1)-dimensional hypersphere are investigated and a sine theorem of the k-dimensional mixed vertex angles which are defined in this paper is given. This result is a generalization of the sine theorem established. By using the generalized sine theorem, we present some new interesting geometric inequalities involving the k-dimensional vertex angles of each n-simplex and the k-dimensional mixed vertex angle of two n-simplices. These results can improve some recent results.
文摘By virtue of Cauchy’s integral formula in the theory of complex functions,the authors establish an integral representation for the weighted geometric mean,apply this newly established integral representation to show that the weighted geometric mean is a complete Bernstein function,and find a new proof of the well-known weighted arithmetic-geometric mean inequality.
基金supported by the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering under Grant No.KJCX2-YW-S02
文摘After half a century research, the mechanical theorem proving in geometries has become an active research topic in the automated reasoning field. This review involves three approaches on automated generating readable machine proofs for geometry theorems which include search methods, coordinate-free methods, and formal logic methods. Some critical issues about these approaches are also discussed. Furthermore, the authors propose three further research directions for the readable machine proofs for geometry theorems, including geometry inequalities, intelligent geometry softwares and machine learning.