期刊文献+
共找到19,761篇文章
< 1 2 250 >
每页显示 20 50 100
Modeling Geometrically Nonlinear FG Plates: A Fast and Accurate Alternative to IGA Method Based on Deep Learning
1
作者 Se Li Tiantang Yu Tinh Quoc Bui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2793-2808,共16页
Isogeometric analysis (IGA) is known to showadvanced features compared to traditional finite element approaches.Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functiona... Isogeometric analysis (IGA) is known to showadvanced features compared to traditional finite element approaches.Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functionalgrading (FG). However, the procedure is usually complex and often is time-consuming. We thus put forward adeep learning method to model the geometrically nonlinear bending behavior of FG plates, bypassing the complexIGA simulation process. A long bidirectional short-term memory (BLSTM) recurrent neural network is trainedusing the load and gradient index as inputs and the displacement responses as outputs. The nonlinear relationshipbetween the outputs and the inputs is constructed usingmachine learning so that the displacements can be directlyestimated by the deep learning network. To provide enough training data, we use S-FSDT Von-Karman IGA andobtain the displacement responses for different loads and gradient indexes. Results show that the recognition erroris low, and demonstrate the feasibility of deep learning technique as a fast and accurate alternative to IGA formodeling the geometrically nonlinear bending behavior of FG plates. 展开更多
关键词 FG plates geometric nonlinearity deep learning BLSTM IGA S-FSDT
下载PDF
Sliding and damming properties of granular debris with different geometric configurations and grain size distributions
2
作者 HE Ligeng TAN Longmeng +2 位作者 YANG Xingguo ZHOU Jiawen LIAO Haimei 《Journal of Mountain Science》 SCIE CSCD 2024年第3期932-951,共20页
Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of g... Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris. 展开更多
关键词 Landslide dam geometric configuration Energy dissipation Inverse grading Physical experiment
下载PDF
Influence of manufacturing process-induced geometrical defects on the energy absorption capacity of polymer lattice structures
3
作者 Alexandre Riot Enrico Panettieri +1 位作者 Antonio Cosculluela Marco Montemurro 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期47-59,共13页
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r... Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for. 展开更多
关键词 Lattice structures Architected cellular materials Dynamic simulation Energy absorption geometrical imperfection Additive manufacturing
下载PDF
An Original Didactic about Standard Model (Geometric Model of Particle: The Quarks)
4
作者 Giovanni Guido Abele Bianchi Gianluigi Filippelli 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期854-874,共21页
This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillator... This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (GMP). From these didactic hypotheses emerges an in-depth phenomenology of particles (quarks) fully compatible with that of SM, showing, besides, that the number of possible quarks is six. 展开更多
关键词 Golden Particle QUARK Sub-Oscillator Semi-Quanta IQuO geometric Structure Golden Number Massive Coupling INTERPENETRATION IQuO PION MESON
下载PDF
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
5
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
下载PDF
Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model
6
作者 曾相龙 赖文喜 +1 位作者 魏祎雯 马余全 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期260-265,共6页
We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expression... We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers. 展开更多
关键词 quantum geometric tensor topological Euler number Chern number Berry curvature quantum metric Su-Schrieffer-Heeger(SSH)model
下载PDF
Quantum Computingvia Entanglement in Geometric Algebra Approach
7
作者 Alexander Soiguine 《Journal of Applied Mathematics and Physics》 2024年第2期445-457,共13页
The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers ... The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme. 展开更多
关键词 geometric Algebra Wave Functions ENTANGLEMENT Maxwell Equations Three-Dimensional Sphere
下载PDF
Semantic segmentation of pyramidal neuron skeletons using geometric deep learning 被引量:1
8
作者 Lanlan Li Jing Qi +1 位作者 Yi Geng Jingpeng Wu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第6期69-76,共8页
Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produ... Neurons can be abstractly represented as skeletons due to the filament nature of neurites.With the rapid development of imaging and image analysis techniques,an increasing amount of neuron skeleton data is being produced.In some scienti fic studies,it is necessary to dissect the axons and dendrites,which is typically done manually and is both tedious and time-consuming.To automate this process,we have developed a method that relies solely on neuronal skeletons using Geometric Deep Learning(GDL).We demonstrate the effectiveness of this method using pyramidal neurons in mammalian brains,and the results are promising for its application in neuroscience studies. 展开更多
关键词 Pyramidal neuron geometric deep learning neuron skeleton semantic segmentation point cloud.
下载PDF
A three-dimensional numerical study on the effect of geometric asymmetry on arcjet thruster performance 被引量:1
9
作者 Hari Prasad NANDYALA Amit KUMAR Jayachandran THANKAPPAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第5期131-146,共16页
In an arcjet thruster,the cathode and constrictor degrade with time,and the electrical arc discharge may become unsymmetrical.In this work,a three-dimensional numerical model of a hydrogen plasma arcjet is developed a... In an arcjet thruster,the cathode and constrictor degrade with time,and the electrical arc discharge may become unsymmetrical.In this work,a three-dimensional numerical model of a hydrogen plasma arcjet is developed and validated to study the effect of unsymmetrical electric arc discharge on thruster performance.The unsymmetrical arc discharge is realized by introducing a radial shift of the cathode so that the cathode tip offset is 80μm(25%of the constrictor radius).Simulations are conducted for both axially centered cathode(coaxial)and off-centered cathode(non-coaxial)configurations with identical propellant flow rates and input current.Simulations show asymmetrical arc discharge in the non-coaxial cathode configuration,resulting in azimuthally asymmetric Joule heating,species concentrations,and velocity field.This asymmetry continues as the plasma expands in the divergent section of the nozzle.Temperature,species concentrations,and axial velocity exhibit asymmetric radial distribution at the nozzle exit.The computed Joule heating was found to reduce with cathode shift,and consequently,the thrust and specific impulse of the thruster was decreased by about 6.6%.In the case of the non-coaxial cathode,geometric asymmetry also induces a small side thrust. 展开更多
关键词 ARCJET geometric asymmetry 3D numerical modelling space electric propulsion HYDROGEN
下载PDF
A novel method for geometric quality assurance of rock joint replicas in direct shear testing-Part 1:Derivation of quality assurance parameters and geometric reproducibility
10
作者 J.Larsson F.Johansson +3 位作者 D.Mas Ivars E.Johnson M.Flansbjer N.W.Portal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2193-2208,共16页
Since each rock joint is unique by nature,the utilization of replicas in direct shear testing is required to carry out experimental parameter studies.However,information about the ability of the replicas to simulate t... Since each rock joint is unique by nature,the utilization of replicas in direct shear testing is required to carry out experimental parameter studies.However,information about the ability of the replicas to simulate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.With the aim to facilitate generation of high-quality direct shear test data from replicas,a novel component in the testing procedure is introduced by presenting two parameters for geometric quality assurance.The parameters are derived from surface comparisons of three-dimensional(3D)scanning data of the rock joint and its replicas.The first parameter,smf,captures morphological deviations between the replica and the rock joint surfaces.smf is derived as the standard deviation of the deviations between the coordinate points of the replica and the rock joint.Four sources of errors introduced in the replica manufacturing process employed in this study could be identified.These errors could be minimized,yielding replicas with smf0.06 mm.The second parameter is a vector,VHp100,which describes deviations with respect to the shear direction.It is the projection of the 100 mm long normal vector of the best-fit plane of the replica joint surface to the corresponding plane of the rock joint.VHp100was found to be less than or equal to 0.36 mm in this study.Application of these two geometric quality assurance parameters demonstrates that it is possible to manufacture replicas with high geometric similarity to the rock joint.In a subsequent paper(part 2),smf and VHp100 are incorporated in a novel quality assurance method,in which the parameters shall be evaluated prior to direct shear testing.Replicas having parameter values below established thresholds shall have a known and narrow dispersion and imitate the shear mechanical behavior of the rock joint. 展开更多
关键词 Three-dimensional(3D)scanning geometric reproducibility geometric quality assurance Replicas Rock joint Surface comparisons
下载PDF
具有投资收益的双险种双复合Poisson-Geometric风险模型的破产概率 被引量:2
11
作者 宋鑫 廖基定 +1 位作者 王琳 张邦 《南华大学学报(自然科学版)》 2023年第2期91-96,共6页
本文研究了保费过程和索赔过程均为复合Poisson-Geometric过程的具有投资收益的双险种双复合Poisson-Geometric风险模型,利用概率论中的期望理论和切比雪夫不等式,得出此模型的调节系数不存在。在将干扰因素考虑进来后,得到了调节系数... 本文研究了保费过程和索赔过程均为复合Poisson-Geometric过程的具有投资收益的双险种双复合Poisson-Geometric风险模型,利用概率论中的期望理论和切比雪夫不等式,得出此模型的调节系数不存在。在将干扰因素考虑进来后,得到了调节系数和破产概率的表达式。 展开更多
关键词 双险种 复合POISSON-geometric过程 破产概率 投资
下载PDF
Geometric Thermoelectric Pump:Energy Harvesting beyond Seebeck and Pyroelectric Effects
12
作者 任捷 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第9期7-13,共7页
Thermal-electric conversion is crucial for smart energy control and harvesting,such as thermal sensing and waste heat recovering.So far,researchers are aware of two main ways of direct thermal-electric conversion,Seeb... Thermal-electric conversion is crucial for smart energy control and harvesting,such as thermal sensing and waste heat recovering.So far,researchers are aware of two main ways of direct thermal-electric conversion,Seebeck and pyroelectric effects,each with different working mechanisms,conditions and limitations.Here,we report the concept of Geometric Thermoelectric Pump(GTEP),as the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects.In contrast to Seebeck effect that requires spatial temperature difference,GTEP converts the time-dependent ambient temperature fluctuation into electricity.Moreover,GTEP does not require polar materials but applies to general conducting systems,and thus is also distinct from pyroelectric effect.We demonstrate that GTEP results from the temperature-fluctuation-induced charge redistribution,which has a deep connection to the topological geometric phase in non-Hermitian dynamics,as a consequence of the fundamental nonequilibrium thermodynamic geometry.The findings advance our understanding of geometric phase induced multiple-physics-coupled pump effect and provide new means of thermal-electric energy harvesting. 展开更多
关键词 SEEBECK HARVESTING geometric
下载PDF
A Gauge-Invariant Geometric Phase for Electrons in a One-Dimensional Periodic Lattice
13
作者 Vivek M. Vyas Dibyendu Roy 《Applied Mathematics》 2023年第1期82-106,共25页
Here the notion of geometric phase acquired by an electron in a one-dimensional periodic lattice as it traverses the Bloch band is carefully studied. Such a geometric phase is useful in characterizing the topological ... Here the notion of geometric phase acquired by an electron in a one-dimensional periodic lattice as it traverses the Bloch band is carefully studied. Such a geometric phase is useful in characterizing the topological properties and the electric polarization of the periodic system. An expression for this geometric phase was first provided by Zak, in a celebrated work three decades ago. Unfortunately, Zak’s expression suffers from two shortcomings: its value depends upon the choice of origin of the unit cell, and is gauge dependent. Upon careful investigation of the time evolution of the system, here we find that the system displays cyclicity in a generalized sense wherein the physical observables return in the course of evolution, rather than the density matrix. Recognition of this generalized cyclicity paves the way for a correct and consistent expression for the geometric phase in this system, christened as Pancharatnam-Zak phase. Pancharatnam-Zak geometric phase does not suffer from the shortcomings of Zak’s expression, and correctly classifies the Bloch bands of the lattice. A naturally filled band extension of the Pancharatnam-Zak phase is also constructed and studied. 展开更多
关键词 geometric Phase Zak Phase Topological Materials
下载PDF
Spatial Expression of Assembly Geometric Errors for Multi-axis Machine Tool Based on Kinematic Jacobian-Torsor Model
14
作者 Ang Tian Shun Liu +2 位作者 Kun Chen Wei Mo Sun Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期234-248,共15页
Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of com... Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of components in the assembly process,which is generally non-uniformly distributed in the whole working space.A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice.However,the expression ranges based on the standard quasistatic expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool.To address this issue,a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors.Firstly,an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies,respectively.Furthermore,based on the proposed kinematic Jacobian-Torsor model,a spatial expression of geometric errors for the multi-axis machine tool is given.And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools.The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors. 展开更多
关键词 geometric error Machine tool Jacobian-Torsor model TOLERANCE Spatial expression
下载PDF
Geometrically Nonlinear Flutter Analysis Based on CFD/CSD Methods and Wind Tunnel Experimental Verification
15
作者 Changrong Zhang Hongtao Guo +2 位作者 Li Yu Binbin Lv Hongya Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1743-1758,共16页
This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the... This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the aerodynamic simulation was conducted based on computational fluid dynamics,and the structural model was established using the nonlinear finite element model and tangential stiffness matrix.First,the equilibrium position was obtained using the nonlinear static aeroelastic iteration.Second,the structural modal under a steady aerodynamic load was extracted.Finally,the generalized displacement time curve was obtained by coupling the unsteady aerodynamics and linearized structure motion equations.Moreover,if the flutter is not at a critical state,the incoming flow dynamic pressure needs to be changed,and the above steps must be repeated until the vibration amplitude are equal.Furthermore,the high-speed geometrically nonlinear flutter of the wing-body assemblymodel with a high-aspect ratio was investigated,and the correctness of the method was verified using high-speed wind tunnel experiments.The results showed that the geometric nonlinearity of the large deformation of the wing caused in-plane bending to become a key factor in flutter characteristics and significantly decreased the dynamic pressure and frequency of the nonlinear flutter compared to those of the linear flutter. 展开更多
关键词 Fluid-structure coupling aeroelasticity FLUTTER geometric nonlinearity numerical simulation
下载PDF
In-plane and out-of-plane quasi-static compression performance enhancement of 3D printed re-entrant diamond auxetic metamaterial with geometrical tuning and fiber reinforcement
16
作者 Niranjan Chikkanna Shankar Krishnapillai Velmurugan Ramachandran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期1-17,共17页
Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For... Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For the first time,the quasi-static uniaxial compression performance of fused filament fabricated re-entrant diamond auxetic metamaterial is evaluated in the x-direction(in-plane)and z-direction(out-of-plane).The most commonly used thermoplastic feedstock,Acrylonitrile butadiene styrene,is considered a material of choice.The effect of influential geometrical parameters of the re-entrant diamond structure and printing parameter is systematically studied using Taguchi’s design of experiments.Grey-based multi-objective optimisation technique has been adopted to arrive at the optimal structure.Efforts are made to improve the stiffness and strength of the structure with fibre reinforcements.Micro glass fibre reinforcements have enhanced specific strength and stiffness in both in-plane and out-ofplane directions.A sevenfold and thirteen times increase in specific strength and energy absorption is evident for glass fibre-reinforced structures in out-of-plane directions compared to in-plane ones.Proper tuning of geometrical parameters of the re-entrant diamond structure can result in a Poisson’s ratio of up to-3.49 when tested in the x-direction.The parametric study has illustrated the tailorability of the structure according to the application requirements.The statistical study has signified each considered parameter’s contribution to the compression performance characteristics of the 3D printed re-entrant diamond auxetic metamaterial. 展开更多
关键词 Auxeticity Fibre reinforcement Tailorability Anisotropy geometrical influence Property enhancement
下载PDF
Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
17
作者 王治旻 马壮 +9 位作者 喻祥敏 郑文 周坤 张宇佳 张钰 兰栋 赵杰 谭新生 李邵雄 于扬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期205-209,共5页
One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors.Since geometric quantum gate is naturally insensitivity to noise,it appears to be a prom... One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors.Since geometric quantum gate is naturally insensitivity to noise,it appears to be a promising routine to achieve high-fidelity,robust quantum gates.The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels.Moreover,traditional geometric schemes usually take more time than equivalent dynamical ones.Here,we experimentally demonstrate a geometric gate scheme with the time-optimal control(TOC)technique in a superconducting quantum circuit.With a transmon qubit and operations restricted to two computational levels,we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts.The measured fidelities of TOC X gate and X/2 gate are 99.81%and 99.79%respectively.Our work shows a promising routine toward scalable fault-tolerant quantum computation. 展开更多
关键词 superconducting qubits geometric quantum computation time-optimal control
下载PDF
Geometric Accuracy and Energy Absorption Characteristics of 3D Printed Continuous Ramie Fiber Reinforced Thin-Walled Composite Structures
18
作者 Kui Wang Hao Lin +5 位作者 Antoine Le Duigou Ruijun Cai Yangyu Huang Ping Cheng Honghao Zhang Yong Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期147-158,共12页
The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In additi... The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications. 展开更多
关键词 Additive manufacturing Continuous fiber BIOCOMPOSITE Thin-walled structure geometric accuracy Energy absorption
下载PDF
Dynamical analysis,geometric control and digital hardware implementation of a complex-valued laser system with a locally active memristor
19
作者 李逸群 刘坚 +2 位作者 李春彪 郝志峰 张晓彤 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期226-236,共11页
In order to make the peak and offset of the signal meet the requirements of artificial equipment,dynamical analysis and geometric control of the laser system have become indispensable.In this paper,a locally active me... In order to make the peak and offset of the signal meet the requirements of artificial equipment,dynamical analysis and geometric control of the laser system have become indispensable.In this paper,a locally active memristor with non-volatile memory is introduced into a complex-valued Lorenz laser system.By using numerical measures,complex dynamical behaviors of the memristive laser system are uncovered.It appears the alternating appearance of quasi-periodic and chaotic oscillations.The mechanism of transformation from a quasi-periodic pattern to a chaotic one is revealed from the perspective of Hamilton energy.Interestingly,initial-values-oriented extreme multi-stability patterns are found,where the coexisting attractors have the same Lyapunov exponents.In addition,the introduction of a memristor greatly improves the complexity of the laser system.Moreover,to control the amplitude and offset of the chaotic signal,two kinds of geometric control methods including amplitude control and rotation control are designed.The results show that these two geometric control methods have revised the size and position of the chaotic signal without changing the chaotic dynamics.Finally,a digital hardware device is developed and the experiment outputs agree fairly well with those of the numerical simulations. 展开更多
关键词 complex-valued chaotic systems locally active memristor multi-stability Hamilton energy geometric control
下载PDF
Geometric discord of tripartite quantum systems
20
作者 熊春河 齐文韬 +1 位作者 缪茂可 吴明晖 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期184-190,共7页
We study the quantification of geometric discord for tripartite quantum systems.Firstly,we obtain the analytic formula of geometric discord for tripartite pure states.It is already known that the geometric discord of ... We study the quantification of geometric discord for tripartite quantum systems.Firstly,we obtain the analytic formula of geometric discord for tripartite pure states.It is already known that the geometric discord of pure states reduces to the geometric entanglement in bipartite systems,the results presented here show that this property is no longer true in tripartite systems.Furthermore,we provide an operational meaning for tripartite geometric discord by linking it to quantum state discrimination,that is,we prove that the geometric discord of tripartite states is equal to the minimum error probability to discriminate a set of quantum states with von Neumann measurement.Lastly,we calculate the geometric discord of three-qubit Bell diagonal states and then investigate the dynamic behavior of tripartite geometric discord under local decoherence.It is interesting that the frozen phenomenon exists for geometric discord in this scenario. 展开更多
关键词 geometric discord tripartite quantum systems quantum state discriminations frozen discord
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部