Geometric partial differential equations of level-set form are usually constructed by a variational method using either Dirac delta function or co-area formula in the energy functional to be minimized. However, the eq...Geometric partial differential equations of level-set form are usually constructed by a variational method using either Dirac delta function or co-area formula in the energy functional to be minimized. However, the equations derived by these two approaches are not consistent. In this paper, we present a third approach for constructing the level-set form equations. By representing various differential geometry quantities and differential geometry operators in terms of the implicit surface, we are able to reformulate three classes of parametric geometric partial differential equations (second-order, fourth-order and sixth- order) into the level-set forms. The reformulation of the equations is generic and simple, and the resulting equations are consistent with their parametric form counterparts. We further prove that the equations derived using co-area formula are also consistent with the parametric forms. However, these equations are of much complicated forms than these given by the equations we derived.展开更多
A new simple Lagrangian method with favorable stability and efficiencyproperties for computing general plane curve evolutions is presented. The methodis based on the flowing finite volume discretization of the intrins...A new simple Lagrangian method with favorable stability and efficiencyproperties for computing general plane curve evolutions is presented. The methodis based on the flowing finite volume discretization of the intrinsic partial differentialequation for updating the position vector of evolving family of plane curves. A curvecan be evolved in the normal direction by a combination of fourth order terms relatedto the intrinsic Laplacian of the curvature, second order terms related to the curva-ture, first order terms related to anisotropy and by a given external velocity field. Theevolution is numerically stabilized by an asymptotically uniform tangential redistri-bution of grid points yielding the first order intrinsic advective terms in the governingsystem of equations. By using a semi-implicit in time discretization it can be numer-ically approximated by a solution to linear penta-diagonal systems of equations (inpresence of the fourth order terms) or tri-diagonal systems (in the case of the secondorder terms). Various numerical experiments of plane curve evolutions, including, inparticular, nonlinear, anisotropic and regularized backward curvature flows, surfacediffusion and Willmore flows, are presented and discussed.展开更多
We present a general framework for a higher-order spline level-set (HLS) method and apply this to biomolecule surfaces construction. Starting from a first order energy functional, we obtain a general level set formu...We present a general framework for a higher-order spline level-set (HLS) method and apply this to biomolecule surfaces construction. Starting from a first order energy functional, we obtain a general level set formulation of geometric partial differential equation, and provide an efficient approach to solving this partial differential equation using a C2 spline basis. We also present a fast cubic spline interpolation algorithm based on convolution and the Z-transform, which exploits the local relationship of interpolatory cubic spline coefficients with respect to given function data values. One example of our HLS method is demonstrated their individual atomic coordinates which is the construction of biomolecule and solvated radii as prerequisites. surfaces (an implicit solvation interface) with展开更多
基金supported in part by NSFC under the Grant 60773165NSFC Key Project under the Grant 10990013National Key Basic Research Project of China under the Grant 2004CB318000
文摘Geometric partial differential equations of level-set form are usually constructed by a variational method using either Dirac delta function or co-area formula in the energy functional to be minimized. However, the equations derived by these two approaches are not consistent. In this paper, we present a third approach for constructing the level-set form equations. By representing various differential geometry quantities and differential geometry operators in terms of the implicit surface, we are able to reformulate three classes of parametric geometric partial differential equations (second-order, fourth-order and sixth- order) into the level-set forms. The reformulation of the equations is generic and simple, and the resulting equations are consistent with their parametric form counterparts. We further prove that the equations derived using co-area formula are also consistent with the parametric forms. However, these equations are of much complicated forms than these given by the equations we derived.
基金This work was supported by grants:VEGA 1/0269/09,APVV-0351-07,APVV-RPEU-0004-07(K.Mikula and M.Balazovjech)and APVV-0247-06(D.Sevcovic).
文摘A new simple Lagrangian method with favorable stability and efficiencyproperties for computing general plane curve evolutions is presented. The methodis based on the flowing finite volume discretization of the intrinsic partial differentialequation for updating the position vector of evolving family of plane curves. A curvecan be evolved in the normal direction by a combination of fourth order terms relatedto the intrinsic Laplacian of the curvature, second order terms related to the curva-ture, first order terms related to anisotropy and by a given external velocity field. Theevolution is numerically stabilized by an asymptotically uniform tangential redistri-bution of grid points yielding the first order intrinsic advective terms in the governingsystem of equations. By using a semi-implicit in time discretization it can be numer-ically approximated by a solution to linear penta-diagonal systems of equations (inpresence of the fourth order terms) or tri-diagonal systems (in the case of the secondorder terms). Various numerical experiments of plane curve evolutions, including, inparticular, nonlinear, anisotropic and regularized backward curvature flows, surfacediffusion and Willmore flows, are presented and discussed.
基金Bajaj is supported in part by NSF of USA under Grant No. CNS-0540033NIH under Grant Nos. P20-RR020647, R01- EB00487, R01-GM074258, R01-GM07308.+2 种基金Xu and Zhang are supported by the National Natural Science Foundation of China under Grant No. 60773165the National Basic Research 973 Program of China under Grant No. 2004CB318000. Zhang is also supported by Beijing Educational Committee Foundation under Grant No. KM200811232009.
文摘We present a general framework for a higher-order spline level-set (HLS) method and apply this to biomolecule surfaces construction. Starting from a first order energy functional, we obtain a general level set formulation of geometric partial differential equation, and provide an efficient approach to solving this partial differential equation using a C2 spline basis. We also present a fast cubic spline interpolation algorithm based on convolution and the Z-transform, which exploits the local relationship of interpolatory cubic spline coefficients with respect to given function data values. One example of our HLS method is demonstrated their individual atomic coordinates which is the construction of biomolecule and solvated radii as prerequisites. surfaces (an implicit solvation interface) with