Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without grou...Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without ground control,the vertical error of the model is the decisive factor that constrains the accuracy of 3D data products.The elevation data obtained by spaceborne laser altimeter have the advantages of short update periods,high positioning precision,and low acquisition cost,providing sufficient data support for improving the elevation accuracy of stereo models through the combined BA.This paper proposes a geometric positioning model based on the integration of Optical Satellite Stereo Imagery(OSSI)and spaceborne laser altimeter data.Firstly,we elaborate the principle and necessity of this work through a literature review of existing methods.Then,the framework of our geo-positioning models.Secondly,four key technologies of the proposed model are expounded in order,including the acquisition and management of global Laser Control Points,the association of LCPs and OSSI,the block adjustment model combining LCPs with OSSI,and the accuracy estimation and quality control of the combined BA.Next,the combined BA experiment using Ziyuan-3(ZY-3)OSSI and ICESat-2 laser data was carried out at the testing site in Shandong Province,China.Experimental results prove that our method can automatically select LCPs with high accuracy.The elevation deviation of the combined BA eventually achieved the Mean Error(ME)of 0.06 m and the Root Mean Square Error(RMSE)of 1.18 m,much lower than the ME of 13.20 m and the RMSE of 3.88 m before the block adjustment.A further research direction will be how to perform more adequate accuracy analysis and quality control using massive laser points as checkpoints.展开更多
The robot' s eyes through the background difference method were used to find broke into the visual range of a moving object and track and monitor the moving object. On the basis of geometry and according to the dista...The robot' s eyes through the background difference method were used to find broke into the visual range of a moving object and track and monitor the moving object. On the basis of geometry and according to the distance and deflection angle of the robot eyes positioning, the objects were captured and tracked by robots eyes. Geometry method precision was low, but simple calculation processing was quick. Thus, it can effectively meet the robot eyes preliminary positioning of the fast moving target.展开更多
In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this mo...In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory, and using some analysis strategies, a model of grey polynomial geometric programming, a model of θ positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem. This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars[grant number 61825103]the Fundamental Research Funds for The Central Universities[grant number 2042022kf1002].
文摘Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without ground control,the vertical error of the model is the decisive factor that constrains the accuracy of 3D data products.The elevation data obtained by spaceborne laser altimeter have the advantages of short update periods,high positioning precision,and low acquisition cost,providing sufficient data support for improving the elevation accuracy of stereo models through the combined BA.This paper proposes a geometric positioning model based on the integration of Optical Satellite Stereo Imagery(OSSI)and spaceborne laser altimeter data.Firstly,we elaborate the principle and necessity of this work through a literature review of existing methods.Then,the framework of our geo-positioning models.Secondly,four key technologies of the proposed model are expounded in order,including the acquisition and management of global Laser Control Points,the association of LCPs and OSSI,the block adjustment model combining LCPs with OSSI,and the accuracy estimation and quality control of the combined BA.Next,the combined BA experiment using Ziyuan-3(ZY-3)OSSI and ICESat-2 laser data was carried out at the testing site in Shandong Province,China.Experimental results prove that our method can automatically select LCPs with high accuracy.The elevation deviation of the combined BA eventually achieved the Mean Error(ME)of 0.06 m and the Root Mean Square Error(RMSE)of 1.18 m,much lower than the ME of 13.20 m and the RMSE of 3.88 m before the block adjustment.A further research direction will be how to perform more adequate accuracy analysis and quality control using massive laser points as checkpoints.
文摘The robot' s eyes through the background difference method were used to find broke into the visual range of a moving object and track and monitor the moving object. On the basis of geometry and according to the distance and deflection angle of the robot eyes positioning, the objects were captured and tracked by robots eyes. Geometry method precision was low, but simple calculation processing was quick. Thus, it can effectively meet the robot eyes preliminary positioning of the fast moving target.
基金Supported by the NSF Jiangsu Province(BK2003211)Supported by the NSF of Henan Province(2003120001)
文摘In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory, and using some analysis strategies, a model of grey polynomial geometric programming, a model of θ positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem. This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.