Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leew...Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.展开更多
The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the compa...The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.展开更多
According to the World Health Organization(WHO),cancer is the leading cause of death for children in low and middle-income countries.Around 400,000 kids get diagnosed with this illness each year,and their survival rat...According to the World Health Organization(WHO),cancer is the leading cause of death for children in low and middle-income countries.Around 400,000 kids get diagnosed with this illness each year,and their survival rate depends on the country in which they live.In this article,we present a Pythagorean fuzzy model that may help doctors identify the most likely type of cancer in children at an early stage by taking into account the symptoms of different types of cancer.The Pythagorean fuzzy decision-making techniques that we utilize are Pythagorean Fuzzy TOPSIS,Pythagorean Fuzzy Entropy(PF-Entropy),and Pythagorean Fuzzy PowerWeighted Geometric(PFPWG).Ourmodel is fed with nineteen symptoms and it diagnoses the risk of eight types of cancers in children.We develop an algorithm for each method and calculate its complexity.Additionally,we consider an example to make a clear understanding of our model.We also compare the final results of various tests that prove the authenticity of this study.展开更多
The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability ...The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making.The PFS is known to address the levels of participation and non-participation.To begin,we introduce the novel concept of a PFZN,which is a hybrid structure of Pythagorean fuzzy sets and the ZN.The PFZN is graded in terms of membership and non-membership,as well as reliability,which provides a strong advice in real-world decision support concerns.The PFZN is a useful tool for dealing with uncertainty in decision-aid problems.The PFZN is a practical way for dealing with such uncertainties in decision-aid problems.The list of aggregation operators:PFZN Einstein weighted averaging and PFZN Einstein weighted geometric,is established under the novel Pythagorean fuzzy ZNs.It is a more precise mathematical instrument for dealing with precision and uncertainty.The core of this research is to develop a numerical algorithmto tackle the uncertainty in real-life problems using PFZNs.To show the applicability and effectiveness of the proposed algorithm,we illustrate the numerical case study related to determining the optimal agricultural field.The main purpose of this work is to describe the extended EDAS approach,then compare the proposed methodology with many other methodologies now in use,and then demonstrate how the suggested methodology may be applied to real-world problems.In addition,the final ranking results that were obtained by the devised techniques weremore efficient and dependable in comparison to the results provided by other methods presented in the literature.展开更多
The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict l...The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict limitations for their satisfaction,dissatisfaction,abstain or refusal grades.To relax these strict constraints,we introduce the concept of spherical linearDiophantine fuzzy sets(SLDFSs)with the inclusion of reference or control parameters.A SLDFSwith parameterizations process is very helpful formodeling uncertainties in themulti-criteria decisionmaking(MCDM)process.SLDFSs can classify a physical systemwith the help of reference parameters.We discuss various real-life applications of SLDFSs towards digital image processing,network systems,vote casting,electrical engineering,medication,and selection of optimal choice.We show some drawbacks of operations of picture fuzzy sets and their corresponding aggregation operators.Some new operations on picture fuzzy sets are also introduced.Some fundamental operations on SLDFSs and different types of score functions of spherical linear Diophantine fuzzy numbers(SLDFNs)are proposed.New aggregation operators named spherical linear Diophantine fuzzy weighted geometric aggregation(SLDFWGA)and spherical linear Diophantine fuzzy weighted average aggregation(SLDFWAA)operators are developed for a robust MCDM approach.An application of the proposed methodology with SLDF information is illustrated.The comparison analysis of the final ranking is also given to demonstrate the validity,feasibility,and efficiency of the proposed MCDM approach.展开更多
Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every bl...We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.展开更多
Let {X, Xn; n ≥ 0} be a sequence of independent and identically distributed random variables with EX=0, and assume that EX^2I(|X| ≤ x) is slowly varying as x →∞, i.e., X is in the domain of attraction of the n...Let {X, Xn; n ≥ 0} be a sequence of independent and identically distributed random variables with EX=0, and assume that EX^2I(|X| ≤ x) is slowly varying as x →∞, i.e., X is in the domain of attraction of the normal law. In this paper, a self-normalized law of the iterated logarithm for the geometrically weighted random series Σ~∞(n=0)β~nXn(0 〈 β 〈 1) is obtained, under some minimal conditions.展开更多
By virtue of Cauchy’s integral formula in the theory of complex functions,the authors establish an integral representation for the weighted geometric mean,apply this newly established integral representation to show ...By virtue of Cauchy’s integral formula in the theory of complex functions,the authors establish an integral representation for the weighted geometric mean,apply this newly established integral representation to show that the weighted geometric mean is a complete Bernstein function,and find a new proof of the well-known weighted arithmetic-geometric mean inequality.展开更多
The multiple attribute group decision making problem in which the input arguments take the form of intuitionistic uncertain linguistic information is studied in the paper.Based on the operational principles of intuiti...The multiple attribute group decision making problem in which the input arguments take the form of intuitionistic uncertain linguistic information is studied in the paper.Based on the operational principles of intuitionistic uncertain linguistic variables and the concept of the expected value and accuracy function,some new dependent aggregation operators with intuitionistic uncertain linguistic information including the dependent intuitionistic uncertain linguistic ordered weighted average(DIULOWA)operator,the dependent intuitionistic uncertain linguistic ordered weighted geometric(DIULOWG)operator,the generalized dependent intuitionistic uncertain linguistic ordered weighted aggregation(GDIULOWA)operator and so on are developed,in which the associated weights only depend on the aggregated arguments.Also,we study some desirable properties of the aggregation operators.Moreover,the approach of multiple attribute group decision making with intuitionistic uncertain linguistic information based on the developed operators is proposed.Finally,an illustrative numerical example is given to show the practicality and effectiveness of the proposed approaches.展开更多
A neutrosophic number(NN)(d=μ+vI)can flexibly represent the indeterminate information corresponding to values/ranges of the indeterminacy I.Regarding the hybrid concept of intuitionistic fuzzy set(IFS)and NN,this stu...A neutrosophic number(NN)(d=μ+vI)can flexibly represent the indeterminate information corresponding to values/ranges of the indeterminacy I.Regarding the hybrid concept of intuitionistic fuzzy set(IFS)and NN,this study presents an orthopair indeterminate set(OIS),an orthopair indeterminate element weighted arithmetic averaging(OIEWAA)operator and an orthopair indeterminate element weighted geometric averaging(OIEWGA)operator to simplify and generalise the existing IFS and interval-valued IFS expressions and aggregation forms.Thus,a multiattribute decision making(DM)approach with indeterminate ranges of decision makers is developed based on the OIEWAA and OIEWGA operators and the score and accuracy functions of orthopair indeterminate elements in OIS setting.Finally,the proposed DM approach is applied to a multi-attribute DM example of manufacturing schemes(alternatives)in OIS setting to demonstrate the applicability and flexibility of the proposed DM approach in OIS setting.展开更多
基金funding this work through General Research Project under Grant No.GRP/93/43.
文摘Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.
基金The Technological Innovation Foundation of NanjingForestry University(No.163060033).
文摘The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.
基金funding this work through General Research Project under Grant No.(R.G.P.2/48/43).
文摘According to the World Health Organization(WHO),cancer is the leading cause of death for children in low and middle-income countries.Around 400,000 kids get diagnosed with this illness each year,and their survival rate depends on the country in which they live.In this article,we present a Pythagorean fuzzy model that may help doctors identify the most likely type of cancer in children at an early stage by taking into account the symptoms of different types of cancer.The Pythagorean fuzzy decision-making techniques that we utilize are Pythagorean Fuzzy TOPSIS,Pythagorean Fuzzy Entropy(PF-Entropy),and Pythagorean Fuzzy PowerWeighted Geometric(PFPWG).Ourmodel is fed with nineteen symptoms and it diagnoses the risk of eight types of cancers in children.We develop an algorithm for each method and calculate its complexity.Additionally,we consider an example to make a clear understanding of our model.We also compare the final results of various tests that prove the authenticity of this study.
文摘The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making.The PFS is known to address the levels of participation and non-participation.To begin,we introduce the novel concept of a PFZN,which is a hybrid structure of Pythagorean fuzzy sets and the ZN.The PFZN is graded in terms of membership and non-membership,as well as reliability,which provides a strong advice in real-world decision support concerns.The PFZN is a useful tool for dealing with uncertainty in decision-aid problems.The PFZN is a practical way for dealing with such uncertainties in decision-aid problems.The list of aggregation operators:PFZN Einstein weighted averaging and PFZN Einstein weighted geometric,is established under the novel Pythagorean fuzzy ZNs.It is a more precise mathematical instrument for dealing with precision and uncertainty.The core of this research is to develop a numerical algorithmto tackle the uncertainty in real-life problems using PFZNs.To show the applicability and effectiveness of the proposed algorithm,we illustrate the numerical case study related to determining the optimal agricultural field.The main purpose of this work is to describe the extended EDAS approach,then compare the proposed methodology with many other methodologies now in use,and then demonstrate how the suggested methodology may be applied to real-world problems.In addition,the final ranking results that were obtained by the devised techniques weremore efficient and dependable in comparison to the results provided by other methods presented in the literature.
文摘The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict limitations for their satisfaction,dissatisfaction,abstain or refusal grades.To relax these strict constraints,we introduce the concept of spherical linearDiophantine fuzzy sets(SLDFSs)with the inclusion of reference or control parameters.A SLDFSwith parameterizations process is very helpful formodeling uncertainties in themulti-criteria decisionmaking(MCDM)process.SLDFSs can classify a physical systemwith the help of reference parameters.We discuss various real-life applications of SLDFSs towards digital image processing,network systems,vote casting,electrical engineering,medication,and selection of optimal choice.We show some drawbacks of operations of picture fuzzy sets and their corresponding aggregation operators.Some new operations on picture fuzzy sets are also introduced.Some fundamental operations on SLDFSs and different types of score functions of spherical linear Diophantine fuzzy numbers(SLDFNs)are proposed.New aggregation operators named spherical linear Diophantine fuzzy weighted geometric aggregation(SLDFWGA)and spherical linear Diophantine fuzzy weighted average aggregation(SLDFWAA)operators are developed for a robust MCDM approach.An application of the proposed methodology with SLDF information is illustrated.The comparison analysis of the final ranking is also given to demonstrate the validity,feasibility,and efficiency of the proposed MCDM approach.
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
基金Supported by National Natural Science Foundation of China (Grant Nos. 11126316, 11071213, 11201421 and 10901138)Natural Science Foundation of Zhejiang Province (Grant Nos. LQ12A01018 and LY12A01020)Foundation of Department of Education of Zhejiang Province (Grant No. Y201119891)
文摘We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.
基金Supported by National Natural Science Foundation of China(Grant Nos.11301481,11371321 and 10901138)National Statistical Science Research Project of China(Grant No.2012LY174)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ12A01018)the Fundamental Research Funds for the Central Universities and Zhejiang Provincial Key Research Base for Humanities and Social Science Research(Statistics)
文摘Let {X, Xn; n ≥ 0} be a sequence of independent and identically distributed random variables with EX=0, and assume that EX^2I(|X| ≤ x) is slowly varying as x →∞, i.e., X is in the domain of attraction of the normal law. In this paper, a self-normalized law of the iterated logarithm for the geometrically weighted random series Σ~∞(n=0)β~nXn(0 〈 β 〈 1) is obtained, under some minimal conditions.
文摘By virtue of Cauchy’s integral formula in the theory of complex functions,the authors establish an integral representation for the weighted geometric mean,apply this newly established integral representation to show that the weighted geometric mean is a complete Bernstein function,and find a new proof of the well-known weighted arithmetic-geometric mean inequality.
基金Supported by the National Natural Science Foundation of China(71761027)Ningbo Natural Science Foundation(2015A610161)。
文摘The multiple attribute group decision making problem in which the input arguments take the form of intuitionistic uncertain linguistic information is studied in the paper.Based on the operational principles of intuitionistic uncertain linguistic variables and the concept of the expected value and accuracy function,some new dependent aggregation operators with intuitionistic uncertain linguistic information including the dependent intuitionistic uncertain linguistic ordered weighted average(DIULOWA)operator,the dependent intuitionistic uncertain linguistic ordered weighted geometric(DIULOWG)operator,the generalized dependent intuitionistic uncertain linguistic ordered weighted aggregation(GDIULOWA)operator and so on are developed,in which the associated weights only depend on the aggregated arguments.Also,we study some desirable properties of the aggregation operators.Moreover,the approach of multiple attribute group decision making with intuitionistic uncertain linguistic information based on the developed operators is proposed.Finally,an illustrative numerical example is given to show the practicality and effectiveness of the proposed approaches.
文摘A neutrosophic number(NN)(d=μ+vI)can flexibly represent the indeterminate information corresponding to values/ranges of the indeterminacy I.Regarding the hybrid concept of intuitionistic fuzzy set(IFS)and NN,this study presents an orthopair indeterminate set(OIS),an orthopair indeterminate element weighted arithmetic averaging(OIEWAA)operator and an orthopair indeterminate element weighted geometric averaging(OIEWGA)operator to simplify and generalise the existing IFS and interval-valued IFS expressions and aggregation forms.Thus,a multiattribute decision making(DM)approach with indeterminate ranges of decision makers is developed based on the OIEWAA and OIEWGA operators and the score and accuracy functions of orthopair indeterminate elements in OIS setting.Finally,the proposed DM approach is applied to a multi-attribute DM example of manufacturing schemes(alternatives)in OIS setting to demonstrate the applicability and flexibility of the proposed DM approach in OIS setting.