期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Quantum Computingvia Entanglement in Geometric Algebra Approach
1
作者 Alexander Soiguine 《Journal of Applied Mathematics and Physics》 2024年第2期445-457,共13页
The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers ... The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme. 展开更多
关键词 Geometric algebra Wave Functions ENTANGLEMENT Maxwell Equations Three-Dimensional Sphere
下载PDF
Parallelizable Calculation of Observables Values on Analog Quantum Computer
2
作者 Alexander Soiguine 《Journal of Applied Mathematics and Physics》 2024年第7期2400-2406,共7页
The superiority of hypothetical quantum computers is not due to faster calculations but due to different schemes of calculations running on special hardware. The core of quantum computing follows the way a state of a ... The superiority of hypothetical quantum computers is not due to faster calculations but due to different schemes of calculations running on special hardware. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In conventional approach it is implemented through tensor product of qubits. In the geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on three-dimensional sphere. 展开更多
关键词 Geometric algebra Wave Functions ENTANGLEMENT Maxwell Equations Three-Dimensional Sphere States OBSERVABLES Measurements GPU MULTITHREADING OPENCL
下载PDF
Singularity Analysis of a 3-RPS Parallel Manipulator Using Geometric Algebra 被引量:13
3
作者 LI Qinchuan XIANG Ji'nan +1 位作者 CHAI Xinxue WU Chuanyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1204-1212,共9页
Singular configurations must be avoided in path planning and control of a parallel manipulator. However, most studies rarely focus on an overall singularity loci distribution of lower-mobility parallel mechanisms. Geo... Singular configurations must be avoided in path planning and control of a parallel manipulator. However, most studies rarely focus on an overall singularity loci distribution of lower-mobility parallel mechanisms. Geometric algebra is employed in analysis of singularity of a 3-RPS parallel manipulator. Twist and wrench in screw theory are represented in geometric algebra. Linear dependency of twists and wrenches are described by outer product in geometric algebra. Reciprocity between twists and constraint wrenches are reflected by duality. To compute the positions of the three spherical joints of the 3-RPS parallel manipulator, Tilt-and-Torsion angles are used to describe the orientation of the moving platform. The outer product of twists and constraint wrenches is used as an index for closeness to singularity(ICS) of the 3-RPS parallel manipulator. An overall and thorough perspective of the singularity loci distribution of the 3-RPS parallel manipulator is disclosed, which is helpful to design, trajectory planning and control of this kind of parallel manipulator. 展开更多
关键词 SINGULARITY parallel manipulator geometric algebra
下载PDF
Algebraic Solution for the Forward Displacement Analysis of the General 6-6 Stewart Mechanism 被引量:8
4
作者 WEI Feng WEI Shimin +1 位作者 ZHANG Ying LIAO Qizheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期56-62,共7页
The solution for the forward displacement analysis(FDA) of the general 6-6 Stewart mechanism(i.e., the connection points of the moving and fixed platforms are not restricted to lying in a plane) has been extensive... The solution for the forward displacement analysis(FDA) of the general 6-6 Stewart mechanism(i.e., the connection points of the moving and fixed platforms are not restricted to lying in a plane) has been extensively studied, but the efficiency of the solution remains to be effectively addressed. To this end, an algebraic elimination method is proposed for the FDA of the general 6-6 Stewart mechanism. The kinematic constraint equations are built using conformal geometric algebra(CGA). The kinematic constraint equations are transformed by a substitution of variables into seven equations with seven unknown variables. According to the characteristic of anti-symmetric matrices, the aforementioned seven equations can be further transformed into seven equations with four unknown variables by a substitution of variables using the Grobner basis. Its elimination weight is increased through changing the degree of one variable, and sixteen equations with four unknown variables can be obtained using the Grobner basis. A 40th-degree univariate polynomial equation is derived by constructing a relatively small-sized 9 × 9 Sylvester resultant matrix. Finally, two numerical examples are employed to verify the proposed method. The results indicate that the proposed method can effectively improve the efficiency of solution and reduce the computational burden because of the small-sized resultant matrix. 展开更多
关键词 general 6-6 Stewart mechanism forward displacement analysis (FDA) conformal geometric algebra (CGA) Gr6bner basis Sylvester resultant
下载PDF
Clifford Algebra and Hypercomplex Number as well as Their Applications in Physics 被引量:2
5
作者 Yingqiu Gu 《Journal of Applied Mathematics and Physics》 2022年第4期1375-1393,共19页
The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing ... The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing a unified, standard, elegant, and open language and tools for numerous complicated mathematical and physical theories. So it is worth popularizing in the teaching of undergraduate physics and mathematics. Clifford algebras can be directly generalized to 2<sup>n</sup>-ary associative algebras. In this generalization, the matrix representation of the orthonormal basis of space-time plays an important role. The matrix representation carries more information than the abstract definition, such as determinant and the definition of inverse elements. Without this matrix representation, the discussion of hypercomplex numbers will be difficult. The zero norm set of hypercomplex numbers is a closed set of special geometric meanings, like the light-cone in the realistic space-time, which has no substantial effect on the algebraic calculus. The physical equations expressed in Clifford algebra have a simple formalism, symmetrical structure, standard derivation, complete content. Therefore, we can hope that this magical algebra can complete a new large synthesis of modern science. 展开更多
关键词 QUATERNION Hypercomplex Number SUPERCOMPLEX Clifford algebra Geometric algebra Maxwell Equations Dirac Equation
下载PDF
Scattering of Geometric Algebra Wave Functions and Collapse in Measurements 被引量:1
6
作者 Alexander Soiguine 《Journal of Applied Mathematics and Physics》 2020年第9期1838-1844,共7页
The research considers wavelike objects that are elements of even subalgebra of geometric algebra in three dimensions. The used formalism particularly eliminates long existing confusion about the reasons behind the ap... The research considers wavelike objects that are elements of even subalgebra of geometric algebra in three dimensions. The used formalism particularly eliminates long existing confusion about the reasons behind the appearance of the imaginary unit in quantum mechanics and introduces clear definition of wave functions. When a wave function acts through the Hopf fibration on a localized geometric algebra element, that is executing a measurement, the result can be named as “collapse” of the wave function. 展开更多
关键词 Wave Functions Geometric algebra MEASUREMENTS SCATTERING ENTANGLEMENT DUALISM
下载PDF
Quantum Computer on Nvidia GPU
7
作者 Alexander Soiguine 《Journal of Applied Mathematics and Physics》 2023年第8期2195-2204,共10页
Geometric Algebra formalism opens the door to developing a theory deeper than conventional quantum mechanics. Generalizations, stemming from implementation of complex numbers as geometrically feasible objects in three... Geometric Algebra formalism opens the door to developing a theory deeper than conventional quantum mechanics. Generalizations, stemming from implementation of complex numbers as geometrically feasible objects in three dimensions, unambiguous definition of states, observables, measurements, Maxwell equations solution in those terms, bring into reality a kind of physical fields spreading through the whole three-dimensional space and values of the time parameter. The fields can be modified instantly in all points of space and time values, thus eliminating the concept of cause and effect, and perceiving of one-directional time. In the suggested theory all measured observable values get available all together, not through looking one by one. In this way quantum computer appeared to be a kind of analog computer keeping and instantly processing information by and on sets of objects possessing an infinite number of degrees of freedom. As practical implementation, the multithread GPUs bearing the CUDA language functionality allow to simultaneously calculate observable measurement values at a number of space/time discrete points only restricted by the GPU threads capacity. 展开更多
关键词 Geometric algebra Quantum Mechanics Wave Functions Maxwell Equations GPU CUDA
下载PDF
Two Shaky Pillars of Quantum Computing
8
作者 Alexander Soiguine 《Journal of Applied Mathematics and Physics》 2023年第2期448-456,共9页
Superposition and entanglement are two theoretical pillars quantum computing rests upon. In the g-qubit theory quantum wave functions are identified by points on the surface of three-dimensional sphere S<sup>3&l... Superposition and entanglement are two theoretical pillars quantum computing rests upon. In the g-qubit theory quantum wave functions are identified by points on the surface of three-dimensional sphere S<sup>3</sup>. That gives different, more physically feasible explanation of what superposition and entanglement are. The core of quantum computing scheme should be in manipulation and transferring of wave functions on S<sup>3</sup> as operators acting on observables and formulated in terms of geometrical algebra. In this way quantum computer will be a kind of analog computer keeping and processing information by sets of objects possessing infinite number of degrees of freedom, contrary to the two value bits or two-dimensional Hilbert space elements, qubits. 展开更多
关键词 Geometric algebra Wave Functions OBSERVABLES MEASUREMENTS
下载PDF
Instantly Propagating States
9
作者 Alexander Soiguine 《Journal of Applied Mathematics and Physics》 2021年第3期468-475,共8页
The current work considers the sprefield wave functions received as special g-qubit solutions of Maxwell equations in the terms of geometric algebra. I will call such g-qubits spreons or sprefields. The purpose of thi... The current work considers the sprefield wave functions received as special g-qubit solutions of Maxwell equations in the terms of geometric algebra. I will call such g-qubits spreons or sprefields. The purpose of this article is to analyze behavior of such wave functions in scattering and measurements. It is shown that sprefields are defined through the whole three-dimensional space at all values of the time parameter. They instantly change all their values when get scattered, that is subjected to Clifford translation. In “measurements”, when a sprefield acts on a static geometric algebra element through the Hopf fibration, sprefield collapses and new geometric algebra non static, rotating element is thereby created. 展开更多
关键词 Wave Functions Geometric algebra MEASUREMENTS SCATTERING ENTANGLEMENT
下载PDF
The 3-Sphere Instead of Hilbert Space
10
作者 Alexander Soiguine 《Journal of Applied Mathematics and Physics》 2022年第9期2733-2742,共10页
The Geometric Algebra formalism opens the door to developing a theory replacing conventional quantum mechanics. Generalizations, stemming from changing of complex numbers by geometrically feasible objects in three dim... The Geometric Algebra formalism opens the door to developing a theory replacing conventional quantum mechanics. Generalizations, stemming from changing of complex numbers by geometrically feasible objects in three dimensions, followed by unambiguous definition of states, observables, measurements, bring into reality clear explanations of weird quantum mechanical features, for example primitively considering atoms as a kind of solar system. The three-sphere S<sup>3</sup> becomes the playground of the torsion kind states eliminating abstract Hilbert space vectors. The S<sup>3</sup> points evolve, governed by updated Schrodinger equation, and act in measurements on observable as operators. 展开更多
关键词 Geometric algebra STATES OBSERVABLES MEASUREMENTS
下载PDF
Gauge Formulation of Heaviside’s Equations
11
作者 Edwin Eugene Klingman 《Journal of Applied Mathematics and Physics》 2022年第7期2292-2302,共11页
A primordial field Self-interaction Principle, analyzed in Hestenes’ Geometric Calculus, leads to Heaviside’s equations of the gravitomagnetic field. When derived from Einstein’s nonlinear field equations Heaviside... A primordial field Self-interaction Principle, analyzed in Hestenes’ Geometric Calculus, leads to Heaviside’s equations of the gravitomagnetic field. When derived from Einstein’s nonlinear field equations Heaviside’s “linearized” equations are known as the “weak field approximation”. When derived from the primordial field equation, there is no mention of field strength;the assumption that the primordial field was predominant at the big bang rather suggests that ultra-strong fields are governed by the equations. This aspect has physical significance, so we explore the assumption by formulating the gauge field version of Heaviside’s theory. We compare with recent linearized gravity formulations and discuss the significance of differences. 展开更多
关键词 Gauge Theory of Gravity Linearized Gravity Heaviside Equations Yang-Mills Gauge Geometric algebra
下载PDF
A 3D GIS spatial data model based on conformal geometric algebra 被引量:26
12
作者 YUAN LinWang YU ZhaoYuan +2 位作者 LUO Wen ZHOU LiangChen LU GuoNia 《Science China Earth Sciences》 SCIE EI CAS 2011年第1期101-112,共12页
We propose a new Geographic Information System (GIS) three-dimensional (3D) data model based on conformal geometric algebra (CGA). In this approach, geographic objects of different dimensions are mapped to the corresp... We propose a new Geographic Information System (GIS) three-dimensional (3D) data model based on conformal geometric algebra (CGA). In this approach, geographic objects of different dimensions are mapped to the corresponding basic elements (blades) in Clifford algebra, and the expressions of multi-dimensional objects are unified without losing their geometric meaning. Geometric and topologic computations are also processed in a clear and coordinates-free way. Under the CGA framework, basic geometrics are constructed and expressed by the inner and outer operators. This expression combined geometrics of different dimensions and metric relations. We present the structure of the framework, data structure design, and the data storage, editing and updating mechanisms of the proposed 3D GIS data model. 3D GIS geometric and topological analyses are performed by CGA metric, geometric and topological operators using an object-oriented approach. Demonstrations with 3D residence district data suggest that our 3D data model expresses effectively geometric objects in different dimensions, which supports computation of both geometric and topological relations. The clear and effective expression and computation structure has the potential to support complex 3D GIS analysis, and spatio-temporal analysis. 展开更多
关键词 conformal geometric algebra 3D data model 3D measurement 3D spatial relation
原文传递
A Weighted Inner Product Estimator in the Geometric Algebra of Euclidean 3-Space for Source Localization Using an EM Vector-sensor 被引量:2
13
作者 JIANG Jingfei ZHANG Jianqiu 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第1期83-93,共11页
In this paper, the source localization by utilizing the measurements of a single electromagnetic (EM) vector-sensor is investigated in the framework of the geometric algebra of Euclidean 3-space. In order to describ... In this paper, the source localization by utilizing the measurements of a single electromagnetic (EM) vector-sensor is investigated in the framework of the geometric algebra of Euclidean 3-space. In order to describe the orthogonality among the electric and magnetic measurements, two multivectors of the geometric algebra of Euclidean 3-space (G3) are used to model the outputs of a spatially collocated EM vector-sensor. Two estimators for the wave propagation vector estimation are then formulated by the inner product between a vector and a bivector in the G3. Since the information used by the two estimators is different, a weighted inner product estimator is then proposed to fuse the two estimators together in the sense of the minimum mean square error (MMSE). Analytical results show that the statistical performances of the weighted inner product estimator are always better than its traditional cross product counterpart. The efficacy of the weighted inner product estimator and the correctness of the analytical predictions are demonstrated by simulation results. 展开更多
关键词 cross product electromagnetic geometric algebra geometric algebra of Euclidean 3-space minimum mean square rule direction finding vector-sensor
原文传递
Cluster automorphism groups of cluster algebras with coefficients 被引量:2
14
作者 CHANG Wen ZHU Bin 《Science China Mathematics》 SCIE CSCD 2016年第10期1919-1936,共18页
We study the cluster automorphism group of a skew-symmetric cluster algebra with geometric coefficients. We introduce the notion of gluing free cluster algebra, and show that under a weak condition the cluster automor... We study the cluster automorphism group of a skew-symmetric cluster algebra with geometric coefficients. We introduce the notion of gluing free cluster algebra, and show that under a weak condition the cluster automorphism group of a gluing free cluster algebra is a subgroup of the cluster automorphism group of its principal part cluster algebra(i.e., the corresponding cluster algebra without coefficients). We show that several classes of cluster algebras with coefficients are gluing free, for example, cluster algebras with principal coefficients,cluster algebras with universal geometric coefficients, and cluster algebras from surfaces(except a 4-gon) with coefficients from boundaries. Moreover, except four kinds of surfaces, the cluster automorphism group of a cluster algebra from a surface with coefficients from boundaries is isomorphic to the cluster automorphism group of its principal part cluster algebra; for a cluster algebra with principal coefficients, its cluster automorphism group is isomorphic to the automorphism group of its initial quiver. 展开更多
关键词 cluster algebra cluster automorphism group gluing free cluster algebra cluster algebra from asurface universal geometric cluster algebra
原文传递
Testing algebraic geometric codes 被引量:2
15
作者 CHEN Hao Software Engineering Institute, East China Normal University, Shanghai 200062, China 《Science China Mathematics》 SCIE 2009年第10期2171-2176,共6页
Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vec... Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable. 展开更多
关键词 number theory of finite field property testing algebraic geometric codes 94B35 94B99
原文传递
Hyperbolic geometry with geometric algebra 被引量:1
16
作者 LI Hong boInstitute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China 《Chinese Science Bulletin》 SCIE EI CAS 1997年第3期262-263,共2页
WE use the geometric algebra in refs. [1, 2] to study hyperbolic geometry. The n-dimensional hyperbolic space H<sup>n</sup> is taken to be the unit sphere of G<sub>1</sub> (I<sub>-n,1<... WE use the geometric algebra in refs. [1, 2] to study hyperbolic geometry. The n-dimensional hyperbolic space H<sup>n</sup> is taken to be the unit sphere of G<sub>1</sub> (I<sub>-n,1</sub>) with antipodal points identified. We study typically H<sup>2</sup>: the dualities between generalized point and generalized line, between generalized triangle and imaginary triangle; convex generalized triangles; Lorentz transformations; generalized circles and double-cycles, etc. Below we list some of the results. 展开更多
关键词 LINE Hyperbolic geometry with geometric algebra
原文传递
Spin in the extended electron model 被引量:3
17
作者 Thomas Pope Werner Hofer 《Frontiers of physics》 SCIE CSCD 2017年第3期81-85,共5页
It has been found that a model of extended electrons is more suited to describe theoretical simula- tions and experimental results obtained via scanning tunnelling microscopes, but while the dynamic properties are eas... It has been found that a model of extended electrons is more suited to describe theoretical simula- tions and experimental results obtained via scanning tunnelling microscopes, but while the dynamic properties are easily incorporated, magnetic properties, and in particular electron spin properties pose a problem due to their conceived isotropy in the absence of measurement. The spin of an electron reacts with a magnetic field and thus has the properties of a vector. However, electron spin is also isotropic, suggesting that it does not have the properties of a vector. This central conflict in the de- scription of an electron's spin, we believe, is the root of many of the paradoxical properties measured and postulated for quantum spin particles. Exploiting a model in which the electron spin is described consistently in real three-dimensional space - an extended electron model - we demonstrate that spin may be described by a vector and still maintain its isotropy. In this framework, we re-evaluate the Stern-Gerlach experiments, the Einstein-Podolsky-Rosen experiments, and the effect of consecutive ts and find in all cases a fairly intuitive explanation. 展开更多
关键词 SPIN extended electron model geometric algebra Stern-Gerlach experiment Einstein-Podolsky-Rosen magnetism
原文传递
Complex brackets and balanced complex 1st-order difference polynomials in 4-dimensional Minkowski space 被引量:1
18
作者 HUANG Lei LI HongBo 《Science China Mathematics》 SCIE 2008年第12期2137-2148,共12页
This paper investigates complex brackets and balanced complex 1st-order difference (BCD) polynomials. Then we propose an algorithm of O(n log n) complexity to check the equality of brackets. It substitutes exponential... This paper investigates complex brackets and balanced complex 1st-order difference (BCD) polynomials. Then we propose an algorithm of O(n log n) complexity to check the equality of brackets. It substitutes exponential algorithms before. Also, BCD polynomials have some usages in geometric calculation. 展开更多
关键词 conformal geometric algebra (CGA) null bracket algebra (NBA) geometric invariant mechanical proving normal forms 68T15 03B35
原文传递
Path planning of hyper‐redundant manipulators for narrow spaces 被引量:1
19
作者 Haoxiang Su Manlu Liu +3 位作者 Hongwei Liu Jianwen Huo Songlin Gou Qing Su 《IET Cyber-Systems and Robotics》 EI 2022年第3期251-263,共13页
Compared with the traditional manipulator,the hyper‐redundant manipulator has the advantage of high flexibility,which is particularly suitable for all kinds of complex working environments.However,the complex space e... Compared with the traditional manipulator,the hyper‐redundant manipulator has the advantage of high flexibility,which is particularly suitable for all kinds of complex working environments.However,the complex space environment requires the hyper‐redundant manipulator to have stronger obstacle avoidance ability and adaptability.In order to solve the problems of a large amount of calculation and poor obstacle avoidance effects in the path planning of the hyper‐redundant manipulator,this paper introduces the‘backbone curve’approach,which transforms the problem of solving joint path points into the behaviour of determining the backbone curve.After the backbone curve approach is used to design the curve that meets the requirements of obstacle avoidance and the end pose,the least squares fitting and the improved space joint fitting are used to match the plane curve and the space curve respectively,and the angle value of each joint of the manipulator is limited by the algorithm.Furthermore,a fusion obstacle avoidance algorithm is proposed to obtain the joint path points of the hyper‐redundant manipulator.Compared with the classic Jacobian iteration method,this method can avoid obstacles better,has the advantages of simple calculation,high efficiency,and can fully reflect the geometric characteristics of the manipulator.Simulation experiments have proven the feasibility of the algorithm. 展开更多
关键词 CONVERGENCE dexterous manipulators geometric algebra motion planning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部