Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the m...Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the machining accuracy is usually improved by increasing the number of tool paths with more time cost.Differently,this work proposes a generated method to improve the efficiency by dressing the worm surface with only one path,and a closed-loop manufacturing process is applied to ensure the machining accuracy.According to an advanced geometric analysis,the worm surface is practically approximated as a swept surface generated by a planar curve.Meanwhile,this curve is applied as the profile of a dressing wheel,which is used to dress the worm surface.The practical machining is carried out in a CNC machine tool,which was originally used to grind helical gears.Finally,a closed-loop manufacturing process including machining,measurement,and modification is proposed to compensate the machining errors.The proposed method is validated with simulations and practical experiments.展开更多
A geometrical analysis based algorithm is proposed to achieve the stereo matching of a single-lens prism based stereovision system. By setting the multi- face prism in frontal position of the static CCD (CM-140MCL) ...A geometrical analysis based algorithm is proposed to achieve the stereo matching of a single-lens prism based stereovision system. By setting the multi- face prism in frontal position of the static CCD (CM-140MCL) camera, equivalent stereo images with different orientations are captured synchronously by virtual cameras which are defined by two boundary lines: the optical axis and CCD camera field of view boundary. Subsequently, the geometrical relationship between the 2D stereo images and corresponding 3D scene is established by employing two fundamentals: ray sketching in which all the pertinent points, lines, and planes are expressed in the 3D camera coordinates and the rule of refraction. Landing on this relationship, the epipolar geometry is thus obtained by fitting a set of corresponding candidate points and thereafter, stereo matching of the prism based stereovision system is obtained. Moreover, the unique geometrical properties of the imaging system allow the proposed method free from the complicated camera calibration procedures and to be easily generalized from binocular and tri-oeular to multi-ocular stereovision systems. The performance of the algorithm is presented through the experiments on the binocular imaging system and the comparison with a conventional projection method demonstrates the efficient assessment of our novel contributions.展开更多
This study carried out detailed structural analyses of the plane structural deformation pattern and sectional structural deformation styles of the Fauqi Anticline by the 3D seismic section with full cover collection, ...This study carried out detailed structural analyses of the plane structural deformation pattern and sectional structural deformation styles of the Fauqi Anticline by the 3D seismic section with full cover collection, and carried out the kinematical simulation of the Fauqi anticlinal deep decollement coupling shallow growth folds and faults based on the fault decollement fold model and the forward balanced geological section technique. The study subsequently evaluated the differentiated petroleum enrichment mechanism of the Fauqi Anticline by utilizing the results of the structural analysis and combining the spatial-temporal relationship analysis of the source, the reservoir, and the caprock. The results showed that the differentiated plane structural deformation pattern and hierarchical sectional structural deformation style were developed by the superposed coupling of deep decollement, syntectonic sedimentation of shallow growth strata, and the compression of the south-west horizontal tectonic stress from the Zagros Mountains. It was found that the differentiated structural deformation caused the differentiated enrichment of petroleum in the Fauqi Anticline. It was also found that the horizontal slip distance of the Fauqi Anticlinal Folds reached around 3.5 km by the simulation of deep decollement coupling the movement of the shallow growth folds and the faults.展开更多
Inorganic solid electrolytes have obvious advantages on safety and electrochemical stability compared to organic liquid electrolytes,but the advance on high ionic conductivity of typical electrolytes is still undergoi...Inorganic solid electrolytes have obvious advantages on safety and electrochemical stability compared to organic liquid electrolytes,but the advance on high ionic conductivity of typical electrolytes is still undergoing.Although the first-principles calculation in the ion migration simulation is an important strategy to develop high-performance solid electrolyte,the process is very time-consuming.Here,we propose an effective method by combining the geometrical analysis and bond valance sum calculation to obtain an approximate minimum energy path preliminarily,in parallel to pave the way for the interoperability of low-precision and high-precision ion transport calculation.Taking a promising electrolyte Li_(3)PS_(4) as an example,we revisit its Li-ionic transport behavior.Our calculated Li-ion pathways and the activation energies(the corresponding values:1.09 eV vs.0.88 eV vs.0.86 eV)in γ-,β- and α-Li_(3)PS_(4) are consistent with the ones obtained from the first-principles calculations.The variations of the position of P-ions lead the rearrangement of the host PS_(4) tetrahedron,affecting the diffusion positions of Li-ions and further enabling high Li^(+) conductivity in β-Li_(3)PS_(4).展开更多
The suitability of six higher order root solvers is examined for solving the nonlinear equilibrium equations in large deformation analysis of structures.The applied methods have a better convergence rate than the quad...The suitability of six higher order root solvers is examined for solving the nonlinear equilibrium equations in large deformation analysis of structures.The applied methods have a better convergence rate than the quadratic Newton-Raphson method.These six methods do not require higher order derivatives to achieve a higher convergence rate.Six algorithms are developed to use the higher order methods in place of the Newton-Raphson method to solve the nonlinear equilibrium equations in geometrically nonlinear analysis of structures.The higher order methods are applied to both continuum and discrete problems(spherical shell and dome truss).The computational cost and the sensitivity of the higher order solution methods and the Newton-Raphson method with respect to the load increment size are comparatively investigated.The numerical results reveal that the higher order methods require a lower number of iterations that the Newton-Raphson method to converge.It is also shown that these methods are less sensitive to the variation of the load increment size.As it is indicated in numerical results,the average residual reduces in a lower number of iterations by the application of the higher order methods in the nonlinear analysis of structures.展开更多
This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular ...This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular momentum hypersurfaces of singular states, the passable and impassable singular points are discriminated easily, meanwhile the information about how much the angular momentum workspace as well as the steering capability available is provided directly. It is obvious that the null motions of steering laws are more effective for the five pyramid configuration(FPC) than for the pyramid configuration(PC) from the singular plots. The possible degenerate hyperbolic singular points of the preceding configurations are calculated and the distinctness of them is denoted by the Gaussian curvature. Furthermore, failure problems to steer integrated power and attitude control system (IPACS) are also analyzed. A sufficient condition of choosing configurations of VSCMGs to guarantee the IPACS steering is given. The angular momentum envelops of VSCMGs, in a given energy and a limited range of rotor speeds, are plotted. The connection and distinctness between CSCMGs and VSCMGs are obtained from the point of view of envelops.展开更多
The nonlinear biased ship rolling motion and capsizing in randoro waves are studied by utilizing a global geometric method. Thompson' s α-parameterized family of restoring functions is adopted in the vessel equation...The nonlinear biased ship rolling motion and capsizing in randoro waves are studied by utilizing a global geometric method. Thompson' s α-parameterized family of restoring functions is adopted in the vessel equation of motion for the representation of bias. To take into account the presence of randomness in the excitation and the response, a stochastic Melnikov method is developed and a mean-square criterion is obtained to provide an upper bound on the domain of the potential chaotic rolling motion. This criterion can be used to predict the qualitative nature of the invariant manifolds which represent the boundary botween safe and unsafe initial conditions, and how these depend on system parameters of the specific ship model. Phase space transport theory and lobe dynamics are used to demonstrate how motions starting from initial conditions inside the regions bounded by the intersected manifolds will evolve and how unexpected capsizing can occur.展开更多
The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when...The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise span ratio. The buckling of the structure is characterized by a global collapse at small rise span ratio; that the torsional buckling of the radial truss occurs at big rise span ratio; and that at proper rise span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.展开更多
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the gener...By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general sixdegrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.展开更多
An analytic massive total cross section of photon proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive ...An analytic massive total cross section of photon proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive structure function F2 measured in lepton-hadron scattering experiments at small values of Bjorken x. It is shown that the descriptions of the inclusive structure function F2 and longitudinal structure function FL are improved with the massive analytic structure function, which may imply the gluon saturation effect dominating the parton evolution process at HERA. The inclusion of the heavy quarks prevent the divergence of the lepton-hadron cross section, which plays a significant role in the description of the photoproduction region.展开更多
Elegans are one of the best model organisms in neural researches, and tropism movement is a typical learning and memorizing activity. Based on one imaging technique called Fast Track-Capturing Microscope (FTCM), we in...Elegans are one of the best model organisms in neural researches, and tropism movement is a typical learning and memorizing activity. Based on one imaging technique called Fast Track-Capturing Microscope (FTCM), we investigated the movement regulation. Two movement patterns are extracted from various trajectories through analysis on turning angle. Then we applied this classification on trajectory regulation on the compound gradient field, and theoretical results corresponded with experiments well, which can initially verify the conclusion. Our breakthrough is performed computational geometric analysis on trajectories. Several independent features were combined to describe movement properties by principal composition analysis (PCA) and support vector machine (SVM). After normalizing all data sets, no-supervising machine learning was processed along with some training under certain supervision. The final classification results performed perfectly, which indicates the further application of such computational analysis in biology researches combining with machine learning.展开更多
Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of bette...Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically展开更多
This paper makes a systematical study on characteristics of structure and motion of the tectonic blocks in northern part of the Shanxi fault depression zone by means of geometrical and kinematical analysis of the bloc...This paper makes a systematical study on characteristics of structure and motion of the tectonic blocks in northern part of the Shanxi fault depression zone by means of geometrical and kinematical analysis of the blocks. The ki-netic behavior of the blocks is discussed by comparing associated geomorphic features of fault movement. All analyses and studies are based on a Domino model. The block movement, fault basin extension and their regional distribution are systematically investigated. The result shows: (a) The studied region is divided into sub-regions by NW striking faults: the western, middle and eastern sub-region with crustal extension being 4.46 km, 2.80 km and 1.86 km, respectively. The extensional amount of each block in the region is estimated being generally about 1 km. The calculated result using the block motion model approximately fits the data of geologic survey. (b) Block kin-ematical features are obviously different between the northern and southern part, with the Hengshan block in be-tween, of the studied region. Moreover, the magnitude of the largest historical earthquake in the northern part is about 6, while that in the southern is 7. The faulted blocks in the northern sub-region show northwestward exten-sion, indicating a feature of extensional graben, while the blocks in the southern part manifest tilt motion, extend-ing southeastward, in the opposite sense of fault dipping. Additional tectonic stress generated by block rotation may be one of major factors affecting seismogenic process in the region. It is responsible for the difference in the movement of the block boundary faults and seismic activities between the two sub-regions.展开更多
Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy...Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy sub-band after NSCT is selected to embed watermark. The watermark is embedded into scaleinvariant feature transform (SIFT) regions. During embedding, the initial region is divided into some cirque sub-regions with the same area, and each watermark bit is embedded into one sub-region. Extensive simulation results and comparisons show that the algorithm gets a good trade-off of invisibility, robustness and capacity, thus obtaining good quality of the image while being able to effectively resist common image processing, and geometric and combo attacks, and normalized similarity is almost all reached.展开更多
The wind-induced responses of a large-scale membrane structure, Expo Boulevard, are evaluated in this study. To obtain the wind pressure distribution on the roof surface, a wind tunnel test is performed. A brief analy...The wind-induced responses of a large-scale membrane structure, Expo Boulevard, are evaluated in this study. To obtain the wind pressure distribution on the roof surface, a wind tunnel test is performed. A brief analysis of wind pressure on the membrane roof is conducted first and then an analysis of the wind-induced responses of the structure is carried out using a numerical integral method in the time domain. In the process of calculation, the geometrical nonlinearity is taken into account. Results indicate that mean, RSM and peak values of the structure responses increase nonlinearly while the approaching flow velocity increases. Strong nonlinear characteristics are observed in the displacement responses, whereas the responses of nodal stress and cable axial force show minimal nonlinear properties when the membrane structure is subjected to wind loads. Different values of the damping ratio only have a minimal impact on the RSM response of the structure because the background component is a dominant part of the total dynamic response and the resonant component is too small. As the damping ratio increases from 0.02 to 0.05, the RMS responses of vertical displacement, nodal stress and cable axial force decrease by 8.1%, 6.7% and 17.9%, respectively. Since the mean component plays a significant role in the wind-induced response, the values of the gust response factor are not high for Expo Boulevard.展开更多
This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowra...This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><em>ξ</em><span style="white-space:normal;"> </span></span></em></span>-function lie on symmetric line <span style="white-space:nowrap;"><em>σ</em></span> =1/2 . Its proof is based on two important properties: the symmetry and alternative oscillation for <span style="white-space:nowrap;"><em><em>ξ</em><span style="white-space:normal;"> </span></em>=<em> u </em>+<em> iv</em></span> . Denote <img src="Edit_317839cd-bad0-44d8-b081-c473bcb336f1.png" width="170" height="15" alt="" />. Riemann proved that u is real and <em>v</em> <span style="white-space:nowrap;">≡ </span>0 for <span style="white-space:nowrap;"><em><span style="white-space:nowrap;">β</span></em> =0</span> (the symmetry). We prove that the zeros of u and v for <em>β</em> <span style="white-space:nowrap;">> 0</span> are alternative, so <span style="white-space:nowrap;"><em>u</em> (<em>t</em>,0)</span> is the single peak. A geometric model was proposed. <img src="Edit_27688061-de42-4bce-ad80-6fb3dd1e3d4b.png" width="85" height="27" alt="" /> is called the root-interval of <em>u </em>(<em>t</em>,<em style="white-space:normal;">β</em>) , if |<span style="white-space:nowrap;"><em>u</em>| <em>> </em>0</span> is inside <em>I</em><sub><em>j</em> </sub>and <span style="white-space:nowrap;"><em>u</em> = 0</span> is at its two ends. If |<em>u</em> (<em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em>)| has only one peak on each <em style="white-space:normal;">I</em><sub style="white-space:normal;"><em>j</em></sub>, which is called the single peak, else called multiple peaks (it will be proved that the multiple peaks do not exist). The important expressions of u and v for <em style="white-space:normal;">β</em><span style="white-space:normal;"> </span>> 0 were derived. By <img src="Edit_b6369c2e-6a6d-4e1a-8a75-00d743cecaf1.png" width="240" height="28" alt="" />, the peak <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> will develop toward its convex direction. Besides, <em style="white-space:normal;">u<sub>t</sub> </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> has opposite signs at two ends <em>t</em> = <em>t<sub>j</sub></em><sub> </sub>, <em>t<sub>j+1</sub></em> of <em>I<sub>j </sub></em>, <img src="Edit_be3f0d63-1d24-4165-ac2c-141c9a47d1c8.png" width="145" height="28" alt="" /> also does, then there exists some inner point <span style="white-space:nowrap;"><em>t</em>′</span> such that <span style="white-space:nowrap;"><em>v</em><em></em> (<em>t′</em>,<em>β</em>) = 0</span>. Therefore {|<em>u</em>|,|<em>v</em>|/<em>β</em>} in <em>I<sub>j</sub></em><sub> </sub>form a peak-valley structure such that <img src="Edit_70bb530a-662f-464a-b3c8-4d5625fbf679.png" width="180" height="22" alt="" /> has positive lower bound independent of <em>t</em> <span style="white-space:nowrap;">∈ </span><em>I<sub>j</sub></em><sub> </sub>(<em>i.e</em>. RH holds in <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>). As <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> does not have the finite condensation point (unless <span style="white-space:nowrap;"><em>u</em> = <em>cons</em><em>t</em>.</span>), any finite t surely falls in some <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>, then <img src="Edit_166a9981-aac8-476b-a29a-496763297b35.png" width="50" height="23" alt="" /> holds for any t (RH is proved). Our previous paper “Local geometric proof of Riemann conjecture” (APM, V.10:8, 2020) has two defects, this paper has amended these defects and given a complete proof of RH.展开更多
The exceptional point(EP)is one of the typical properties of parity–time-symmetric systems,arising from modes coupling with identical resonant frequencies or propagation constants in optics.Here we show that in addit...The exceptional point(EP)is one of the typical properties of parity–time-symmetric systems,arising from modes coupling with identical resonant frequencies or propagation constants in optics.Here we show that in addition to two different modes coupling,a nonuniform distribution of gain and loss leads to an offset from the original propagation constants,including both real and imaginary parts,resulting in the absence of EP.These behaviors are examined by the general coupled-mode theory from the first principle of the Maxwell equations,which yields results that are more accurate than those from the classical coupled-mode theory.Numerical verification via the finite element method is provided.In the end,we present an approach to achieve lossless propagation in a geometrically symmetric waveguide array.展开更多
The co-rotational finite element formulation is an attractive technique extending the capabilities of an existing high performing linear element to geometrically nonlinear analysis.This paper presents a modified co-ro...The co-rotational finite element formulation is an attractive technique extending the capabilities of an existing high performing linear element to geometrically nonlinear analysis.This paper presents a modified co-rotational framework,unified for beam,shell,and brick elements.A unified zero-spin criterion is proposed to specify the local element frame,whose origin is always located at the centroid.Utilizing this criterion,a spin matrix is introduced,and the local frame is invariant to the element nodal ordering.Additionally,the projector matrix is redefined in a more intuitive way,which is the derivative of local co-rotational element frame with respect to the global one.Furthermore,the nodal rotation is obtained with pseudo vector and instantaneous rotation,under a high-order accurate transformation.The resulting formulations are achieved in unified expression and thus a series of linear elements can be embedded into the framework.Several examples are presented to demonstrate the efficiency and accuracy of the proposed framework for large displacement analysis.展开更多
The geometric and physical analysis methods are conventional methods for the derivation of skeleton lines in the fields of cartography,digital photogrammetry,and related areas.This paper proposes a stepwise approach t...The geometric and physical analysis methods are conventional methods for the derivation of skeleton lines in the fields of cartography,digital photogrammetry,and related areas.This paper proposes a stepwise approach that uses the physical analysis method in the first stage and the geometric analysis method in the subsequent stage.The physical analysis method analyses the terrain globally to obtain a rough set of skeleton lines for a terrain surface.The rough skeleton lines help to structure the ordering of feature points by the geometric analysis method.展开更多
A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established throu...A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.展开更多
基金Project(2019 YFB 2004700)supported by the National Key R&D Project of ChinaProject(HTL-O-19 K 02)supported by National Key Laboratory of Science and Technology on Helicopter Transmission,Nanjing University of Aeronautics and Astronautics,China。
文摘Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the machining accuracy is usually improved by increasing the number of tool paths with more time cost.Differently,this work proposes a generated method to improve the efficiency by dressing the worm surface with only one path,and a closed-loop manufacturing process is applied to ensure the machining accuracy.According to an advanced geometric analysis,the worm surface is practically approximated as a swept surface generated by a planar curve.Meanwhile,this curve is applied as the profile of a dressing wheel,which is used to dress the worm surface.The practical machining is carried out in a CNC machine tool,which was originally used to grind helical gears.Finally,a closed-loop manufacturing process including machining,measurement,and modification is proposed to compensate the machining errors.The proposed method is validated with simulations and practical experiments.
基金supported by the Ministry of Education of Singapore under Grant No.R265-000-277-112
文摘A geometrical analysis based algorithm is proposed to achieve the stereo matching of a single-lens prism based stereovision system. By setting the multi- face prism in frontal position of the static CCD (CM-140MCL) camera, equivalent stereo images with different orientations are captured synchronously by virtual cameras which are defined by two boundary lines: the optical axis and CCD camera field of view boundary. Subsequently, the geometrical relationship between the 2D stereo images and corresponding 3D scene is established by employing two fundamentals: ray sketching in which all the pertinent points, lines, and planes are expressed in the 3D camera coordinates and the rule of refraction. Landing on this relationship, the epipolar geometry is thus obtained by fitting a set of corresponding candidate points and thereafter, stereo matching of the prism based stereovision system is obtained. Moreover, the unique geometrical properties of the imaging system allow the proposed method free from the complicated camera calibration procedures and to be easily generalized from binocular and tri-oeular to multi-ocular stereovision systems. The performance of the algorithm is presented through the experiments on the binocular imaging system and the comparison with a conventional projection method demonstrates the efficient assessment of our novel contributions.
基金supported by the National Basic Research Program of China (Grant No. 2014CB239201)the National Science and Technology Major Project (Grant No. 2011ZX05030-005-03)
文摘This study carried out detailed structural analyses of the plane structural deformation pattern and sectional structural deformation styles of the Fauqi Anticline by the 3D seismic section with full cover collection, and carried out the kinematical simulation of the Fauqi anticlinal deep decollement coupling shallow growth folds and faults based on the fault decollement fold model and the forward balanced geological section technique. The study subsequently evaluated the differentiated petroleum enrichment mechanism of the Fauqi Anticline by utilizing the results of the structural analysis and combining the spatial-temporal relationship analysis of the source, the reservoir, and the caprock. The results showed that the differentiated plane structural deformation pattern and hierarchical sectional structural deformation style were developed by the superposed coupling of deep decollement, syntectonic sedimentation of shallow growth strata, and the compression of the south-west horizontal tectonic stress from the Zagros Mountains. It was found that the differentiated structural deformation caused the differentiated enrichment of petroleum in the Fauqi Anticline. It was also found that the horizontal slip distance of the Fauqi Anticlinal Folds reached around 3.5 km by the simulation of deep decollement coupling the movement of the shallow growth folds and the faults.
基金supported by the National Key Research and Development Program of China(Nos.2017YFB0701600)the National Natural Science Foundation of China(51622207,U1630134).
文摘Inorganic solid electrolytes have obvious advantages on safety and electrochemical stability compared to organic liquid electrolytes,but the advance on high ionic conductivity of typical electrolytes is still undergoing.Although the first-principles calculation in the ion migration simulation is an important strategy to develop high-performance solid electrolyte,the process is very time-consuming.Here,we propose an effective method by combining the geometrical analysis and bond valance sum calculation to obtain an approximate minimum energy path preliminarily,in parallel to pave the way for the interoperability of low-precision and high-precision ion transport calculation.Taking a promising electrolyte Li_(3)PS_(4) as an example,we revisit its Li-ionic transport behavior.Our calculated Li-ion pathways and the activation energies(the corresponding values:1.09 eV vs.0.88 eV vs.0.86 eV)in γ-,β- and α-Li_(3)PS_(4) are consistent with the ones obtained from the first-principles calculations.The variations of the position of P-ions lead the rearrangement of the host PS_(4) tetrahedron,affecting the diffusion positions of Li-ions and further enabling high Li^(+) conductivity in β-Li_(3)PS_(4).
文摘The suitability of six higher order root solvers is examined for solving the nonlinear equilibrium equations in large deformation analysis of structures.The applied methods have a better convergence rate than the quadratic Newton-Raphson method.These six methods do not require higher order derivatives to achieve a higher convergence rate.Six algorithms are developed to use the higher order methods in place of the Newton-Raphson method to solve the nonlinear equilibrium equations in geometrically nonlinear analysis of structures.The higher order methods are applied to both continuum and discrete problems(spherical shell and dome truss).The computational cost and the sensitivity of the higher order solution methods and the Newton-Raphson method with respect to the load increment size are comparatively investigated.The numerical results reveal that the higher order methods require a lower number of iterations that the Newton-Raphson method to converge.It is also shown that these methods are less sensitive to the variation of the load increment size.As it is indicated in numerical results,the average residual reduces in a lower number of iterations by the application of the higher order methods in the nonlinear analysis of structures.
文摘This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular momentum hypersurfaces of singular states, the passable and impassable singular points are discriminated easily, meanwhile the information about how much the angular momentum workspace as well as the steering capability available is provided directly. It is obvious that the null motions of steering laws are more effective for the five pyramid configuration(FPC) than for the pyramid configuration(PC) from the singular plots. The possible degenerate hyperbolic singular points of the preceding configurations are calculated and the distinctness of them is denoted by the Gaussian curvature. Furthermore, failure problems to steer integrated power and attitude control system (IPACS) are also analyzed. A sufficient condition of choosing configurations of VSCMGs to guarantee the IPACS steering is given. The angular momentum envelops of VSCMGs, in a given energy and a limited range of rotor speeds, are plotted. The connection and distinctness between CSCMGs and VSCMGs are obtained from the point of view of envelops.
文摘The nonlinear biased ship rolling motion and capsizing in randoro waves are studied by utilizing a global geometric method. Thompson' s α-parameterized family of restoring functions is adopted in the vessel equation of motion for the representation of bias. To take into account the presence of randomness in the excitation and the response, a stochastic Melnikov method is developed and a mean-square criterion is obtained to provide an upper bound on the domain of the potential chaotic rolling motion. This criterion can be used to predict the qualitative nature of the invariant manifolds which represent the boundary botween safe and unsafe initial conditions, and how these depend on system parameters of the specific ship model. Phase space transport theory and lobe dynamics are used to demonstrate how motions starting from initial conditions inside the regions bounded by the intersected manifolds will evolve and how unexpected capsizing can occur.
文摘The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise span ratio. The buckling of the structure is characterized by a global collapse at small rise span ratio; that the torsional buckling of the radial truss occurs at big rise span ratio; and that at proper rise span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.
基金the National Natural Science Foundation of China (10572049)Hunan Provincial Natural Science Foundation of China (07JJ3009)National 985 Special Foundation of China
文摘By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general sixdegrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11305040,11375071 and 11447203the Education Department of Guizhou Province Innovation Talent Fund under Grant No[2015]5508+2 种基金the Education Department of Guizhou Province Innovation Team Fund under Grant No[2014]35the Guizhou Province Science Technology Foundation under Grant No[2015]2114the Guizhou Province Innovation Talent Team Fund under Grant No[2015]4015
文摘An analytic massive total cross section of photon proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive structure function F2 measured in lepton-hadron scattering experiments at small values of Bjorken x. It is shown that the descriptions of the inclusive structure function F2 and longitudinal structure function FL are improved with the massive analytic structure function, which may imply the gluon saturation effect dominating the parton evolution process at HERA. The inclusion of the heavy quarks prevent the divergence of the lepton-hadron cross section, which plays a significant role in the description of the photoproduction region.
文摘Elegans are one of the best model organisms in neural researches, and tropism movement is a typical learning and memorizing activity. Based on one imaging technique called Fast Track-Capturing Microscope (FTCM), we investigated the movement regulation. Two movement patterns are extracted from various trajectories through analysis on turning angle. Then we applied this classification on trajectory regulation on the compound gradient field, and theoretical results corresponded with experiments well, which can initially verify the conclusion. Our breakthrough is performed computational geometric analysis on trajectories. Several independent features were combined to describe movement properties by principal composition analysis (PCA) and support vector machine (SVM). After normalizing all data sets, no-supervising machine learning was processed along with some training under certain supervision. The final classification results performed perfectly, which indicates the further application of such computational analysis in biology researches combining with machine learning.
基金supported by The HongKong Polytechnic University Research Grants(No.1-BB81)grants from National Natural Science Foundation of China,Nos.10872078 and 10832012
文摘Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically
文摘This paper makes a systematical study on characteristics of structure and motion of the tectonic blocks in northern part of the Shanxi fault depression zone by means of geometrical and kinematical analysis of the blocks. The ki-netic behavior of the blocks is discussed by comparing associated geomorphic features of fault movement. All analyses and studies are based on a Domino model. The block movement, fault basin extension and their regional distribution are systematically investigated. The result shows: (a) The studied region is divided into sub-regions by NW striking faults: the western, middle and eastern sub-region with crustal extension being 4.46 km, 2.80 km and 1.86 km, respectively. The extensional amount of each block in the region is estimated being generally about 1 km. The calculated result using the block motion model approximately fits the data of geologic survey. (b) Block kin-ematical features are obviously different between the northern and southern part, with the Hengshan block in be-tween, of the studied region. Moreover, the magnitude of the largest historical earthquake in the northern part is about 6, while that in the southern is 7. The faulted blocks in the northern sub-region show northwestward exten-sion, indicating a feature of extensional graben, while the blocks in the southern part manifest tilt motion, extend-ing southeastward, in the opposite sense of fault dipping. Additional tectonic stress generated by block rotation may be one of major factors affecting seismogenic process in the region. It is responsible for the difference in the movement of the block boundary faults and seismic activities between the two sub-regions.
基金supported by the National Natural Science Foundation of China(61379010)the Natural Science Basic Research Plan in Shaanxi Province of China(2015JM6293)
文摘Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy sub-band after NSCT is selected to embed watermark. The watermark is embedded into scaleinvariant feature transform (SIFT) regions. During embedding, the initial region is divided into some cirque sub-regions with the same area, and each watermark bit is embedded into one sub-region. Extensive simulation results and comparisons show that the algorithm gets a good trade-off of invisibility, robustness and capacity, thus obtaining good quality of the image while being able to effectively resist common image processing, and geometric and combo attacks, and normalized similarity is almost all reached.
基金National Natural Science Foundation under Grant No. 51278368the Fundamental Research Funds for the Central Universities
文摘The wind-induced responses of a large-scale membrane structure, Expo Boulevard, are evaluated in this study. To obtain the wind pressure distribution on the roof surface, a wind tunnel test is performed. A brief analysis of wind pressure on the membrane roof is conducted first and then an analysis of the wind-induced responses of the structure is carried out using a numerical integral method in the time domain. In the process of calculation, the geometrical nonlinearity is taken into account. Results indicate that mean, RSM and peak values of the structure responses increase nonlinearly while the approaching flow velocity increases. Strong nonlinear characteristics are observed in the displacement responses, whereas the responses of nodal stress and cable axial force show minimal nonlinear properties when the membrane structure is subjected to wind loads. Different values of the damping ratio only have a minimal impact on the RSM response of the structure because the background component is a dominant part of the total dynamic response and the resonant component is too small. As the damping ratio increases from 0.02 to 0.05, the RMS responses of vertical displacement, nodal stress and cable axial force decrease by 8.1%, 6.7% and 17.9%, respectively. Since the mean component plays a significant role in the wind-induced response, the values of the gust response factor are not high for Expo Boulevard.
文摘This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><em>ξ</em><span style="white-space:normal;"> </span></span></em></span>-function lie on symmetric line <span style="white-space:nowrap;"><em>σ</em></span> =1/2 . Its proof is based on two important properties: the symmetry and alternative oscillation for <span style="white-space:nowrap;"><em><em>ξ</em><span style="white-space:normal;"> </span></em>=<em> u </em>+<em> iv</em></span> . Denote <img src="Edit_317839cd-bad0-44d8-b081-c473bcb336f1.png" width="170" height="15" alt="" />. Riemann proved that u is real and <em>v</em> <span style="white-space:nowrap;">≡ </span>0 for <span style="white-space:nowrap;"><em><span style="white-space:nowrap;">β</span></em> =0</span> (the symmetry). We prove that the zeros of u and v for <em>β</em> <span style="white-space:nowrap;">> 0</span> are alternative, so <span style="white-space:nowrap;"><em>u</em> (<em>t</em>,0)</span> is the single peak. A geometric model was proposed. <img src="Edit_27688061-de42-4bce-ad80-6fb3dd1e3d4b.png" width="85" height="27" alt="" /> is called the root-interval of <em>u </em>(<em>t</em>,<em style="white-space:normal;">β</em>) , if |<span style="white-space:nowrap;"><em>u</em>| <em>> </em>0</span> is inside <em>I</em><sub><em>j</em> </sub>and <span style="white-space:nowrap;"><em>u</em> = 0</span> is at its two ends. If |<em>u</em> (<em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em>)| has only one peak on each <em style="white-space:normal;">I</em><sub style="white-space:normal;"><em>j</em></sub>, which is called the single peak, else called multiple peaks (it will be proved that the multiple peaks do not exist). The important expressions of u and v for <em style="white-space:normal;">β</em><span style="white-space:normal;"> </span>> 0 were derived. By <img src="Edit_b6369c2e-6a6d-4e1a-8a75-00d743cecaf1.png" width="240" height="28" alt="" />, the peak <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> will develop toward its convex direction. Besides, <em style="white-space:normal;">u<sub>t</sub> </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> has opposite signs at two ends <em>t</em> = <em>t<sub>j</sub></em><sub> </sub>, <em>t<sub>j+1</sub></em> of <em>I<sub>j </sub></em>, <img src="Edit_be3f0d63-1d24-4165-ac2c-141c9a47d1c8.png" width="145" height="28" alt="" /> also does, then there exists some inner point <span style="white-space:nowrap;"><em>t</em>′</span> such that <span style="white-space:nowrap;"><em>v</em><em></em> (<em>t′</em>,<em>β</em>) = 0</span>. Therefore {|<em>u</em>|,|<em>v</em>|/<em>β</em>} in <em>I<sub>j</sub></em><sub> </sub>form a peak-valley structure such that <img src="Edit_70bb530a-662f-464a-b3c8-4d5625fbf679.png" width="180" height="22" alt="" /> has positive lower bound independent of <em>t</em> <span style="white-space:nowrap;">∈ </span><em>I<sub>j</sub></em><sub> </sub>(<em>i.e</em>. RH holds in <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>). As <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> does not have the finite condensation point (unless <span style="white-space:nowrap;"><em>u</em> = <em>cons</em><em>t</em>.</span>), any finite t surely falls in some <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>, then <img src="Edit_166a9981-aac8-476b-a29a-496763297b35.png" width="50" height="23" alt="" /> holds for any t (RH is proved). Our previous paper “Local geometric proof of Riemann conjecture” (APM, V.10:8, 2020) has two defects, this paper has amended these defects and given a complete proof of RH.
基金National Natural Science Foundation of China(NSFC)(11274083,61405067)Guandong Natural Science Foundation(2015A030313748)Shenzhen Municipal Science and Technology Plan(JCYJ20150513151706573)
文摘The exceptional point(EP)is one of the typical properties of parity–time-symmetric systems,arising from modes coupling with identical resonant frequencies or propagation constants in optics.Here we show that in addition to two different modes coupling,a nonuniform distribution of gain and loss leads to an offset from the original propagation constants,including both real and imaginary parts,resulting in the absence of EP.These behaviors are examined by the general coupled-mode theory from the first principle of the Maxwell equations,which yields results that are more accurate than those from the classical coupled-mode theory.Numerical verification via the finite element method is provided.In the end,we present an approach to achieve lossless propagation in a geometrically symmetric waveguide array.
基金the National Natural Science Foundation of China(Grant Nos.11972297 and 11972300)the Fundamental Research Funds for the Central Universities of China(Grant No.G2019KY05203).
文摘The co-rotational finite element formulation is an attractive technique extending the capabilities of an existing high performing linear element to geometrically nonlinear analysis.This paper presents a modified co-rotational framework,unified for beam,shell,and brick elements.A unified zero-spin criterion is proposed to specify the local element frame,whose origin is always located at the centroid.Utilizing this criterion,a spin matrix is introduced,and the local frame is invariant to the element nodal ordering.Additionally,the projector matrix is redefined in a more intuitive way,which is the derivative of local co-rotational element frame with respect to the global one.Furthermore,the nodal rotation is obtained with pseudo vector and instantaneous rotation,under a high-order accurate transformation.The resulting formulations are achieved in unified expression and thus a series of linear elements can be embedded into the framework.Several examples are presented to demonstrate the efficiency and accuracy of the proposed framework for large displacement analysis.
文摘The geometric and physical analysis methods are conventional methods for the derivation of skeleton lines in the fields of cartography,digital photogrammetry,and related areas.This paper proposes a stepwise approach that uses the physical analysis method in the first stage and the geometric analysis method in the subsequent stage.The physical analysis method analyses the terrain globally to obtain a rough set of skeleton lines for a terrain surface.The rough skeleton lines help to structure the ordering of feature points by the geometric analysis method.
文摘A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.