Based upon a generalized variational principle, which relaxed the inter element continuity requirements, a novel refined hybrid Mindlin plate element is developed, its non linear element stiffness matrices are decom...Based upon a generalized variational principle, which relaxed the inter element continuity requirements, a novel refined hybrid Mindlin plate element is developed, its non linear element stiffness matrices are decomposed into a series of matrices with respect to the assumed strain modes. The formulation presented in this paper is different from any other non linear mixed/hybrid element formulation all successful experience of linear hybrid formulation is absorbed into the formulation(adding non conforming modes and realizing orthogonalization) Numerical results show that the present approach is more effective than any other non linear hybrid element formulation over the accuracy and computational efficiency. In addition, non conforming modes can also overcome the shear locking effect.展开更多
An algorithm integrating reduced order model(ROM),equivalent linearization(EL),and finite element method(FEM)is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under acousti...An algorithm integrating reduced order model(ROM),equivalent linearization(EL),and finite element method(FEM)is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under acoustic pressure loading.Based on large deflection finite element formulation,the nonlinear equations of motion of stiffened plates are obtained.To reduce the computation,a reduced order model of the structures is established.Then the EL technique is incorporated into FE software NASTRAN by the direct matrix abstraction program(DMAP).For the stiffened plates,a finite element model of beam and plate assembly is established,in which the nodes of beam elements are shared with shell elements,and the offset and section properties of the beam are set.The presented method can capture the root-mean-square(RMS) of the stress responses of shell and beam elements of stiffened plates,and analyze the stress distribution of the stiffened surface and the unstiffened surface,respectively.Finally,the statistical dynamic response results obtained by linear and EL methods are compared.It is shown that the proposed method can be used to analyze the geometrically nonlinear random responses of stiffened plates.The geometric nonlinearity plays an important role in the vibration response of stiffened plates,particularly at high acoustic pressure loading.展开更多
Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterativ...Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.展开更多
The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical...The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical tool for the characterization and construction of images in Geometrical Optics. The Sympletic Map constitutes a Lie Group, with an algebra associated: the Lie Algebra. In general, the SM can be expressed as an infinite series, where each term corresponds to different contributions produced by the optical devices that constitute the optical system (lenses, apertures, bandwidth cutoff, etc.). The level of correction to be performed on the image to recover the original object is clear and controllable by SM. This formalism can be extended easily to physical optics to describe diffraction and interference phenomena.展开更多
The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict l...The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict limitations for their satisfaction,dissatisfaction,abstain or refusal grades.To relax these strict constraints,we introduce the concept of spherical linearDiophantine fuzzy sets(SLDFSs)with the inclusion of reference or control parameters.A SLDFSwith parameterizations process is very helpful formodeling uncertainties in themulti-criteria decisionmaking(MCDM)process.SLDFSs can classify a physical systemwith the help of reference parameters.We discuss various real-life applications of SLDFSs towards digital image processing,network systems,vote casting,electrical engineering,medication,and selection of optimal choice.We show some drawbacks of operations of picture fuzzy sets and their corresponding aggregation operators.Some new operations on picture fuzzy sets are also introduced.Some fundamental operations on SLDFSs and different types of score functions of spherical linear Diophantine fuzzy numbers(SLDFNs)are proposed.New aggregation operators named spherical linear Diophantine fuzzy weighted geometric aggregation(SLDFWGA)and spherical linear Diophantine fuzzy weighted average aggregation(SLDFWAA)operators are developed for a robust MCDM approach.An application of the proposed methodology with SLDF information is illustrated.The comparison analysis of the final ranking is also given to demonstrate the validity,feasibility,and efficiency of the proposed MCDM approach.展开更多
For satate form linear gram as Fang and sao deined and approach which would find an optimal solution by solving an anconstrained convex dual programming.Thedual was construcied by applying an emropic peturbation and a...For satate form linear gram as Fang and sao deined and approach which would find an optimal solution by solving an anconstrained convex dual programming.Thedual was construcied by applying an emropic peturbation and a simple Inequality Inz【z-1 for z】0n,In this paper,we suggest than a paperbation functiontake the place of Inx such that the new approdt has good numerical stability andhas all properties of the original展开更多
文摘Based upon a generalized variational principle, which relaxed the inter element continuity requirements, a novel refined hybrid Mindlin plate element is developed, its non linear element stiffness matrices are decomposed into a series of matrices with respect to the assumed strain modes. The formulation presented in this paper is different from any other non linear mixed/hybrid element formulation all successful experience of linear hybrid formulation is absorbed into the formulation(adding non conforming modes and realizing orthogonalization) Numerical results show that the present approach is more effective than any other non linear hybrid element formulation over the accuracy and computational efficiency. In addition, non conforming modes can also overcome the shear locking effect.
基金supported by the National Natural Science Foundations of China(Nos.11872079,11572109)the Science and Technology Project of Hebei Education Department(No.QN2019135)Advanced Talents Incubation Program of the Hebei University(No.521000981285)。
文摘An algorithm integrating reduced order model(ROM),equivalent linearization(EL),and finite element method(FEM)is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under acoustic pressure loading.Based on large deflection finite element formulation,the nonlinear equations of motion of stiffened plates are obtained.To reduce the computation,a reduced order model of the structures is established.Then the EL technique is incorporated into FE software NASTRAN by the direct matrix abstraction program(DMAP).For the stiffened plates,a finite element model of beam and plate assembly is established,in which the nodes of beam elements are shared with shell elements,and the offset and section properties of the beam are set.The presented method can capture the root-mean-square(RMS) of the stress responses of shell and beam elements of stiffened plates,and analyze the stress distribution of the stiffened surface and the unstiffened surface,respectively.Finally,the statistical dynamic response results obtained by linear and EL methods are compared.It is shown that the proposed method can be used to analyze the geometrically nonlinear random responses of stiffened plates.The geometric nonlinearity plays an important role in the vibration response of stiffened plates,particularly at high acoustic pressure loading.
基金Supported by the National Natural Science Foundation of China(61272300)
文摘Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.
文摘The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical tool for the characterization and construction of images in Geometrical Optics. The Sympletic Map constitutes a Lie Group, with an algebra associated: the Lie Algebra. In general, the SM can be expressed as an infinite series, where each term corresponds to different contributions produced by the optical devices that constitute the optical system (lenses, apertures, bandwidth cutoff, etc.). The level of correction to be performed on the image to recover the original object is clear and controllable by SM. This formalism can be extended easily to physical optics to describe diffraction and interference phenomena.
文摘The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict limitations for their satisfaction,dissatisfaction,abstain or refusal grades.To relax these strict constraints,we introduce the concept of spherical linearDiophantine fuzzy sets(SLDFSs)with the inclusion of reference or control parameters.A SLDFSwith parameterizations process is very helpful formodeling uncertainties in themulti-criteria decisionmaking(MCDM)process.SLDFSs can classify a physical systemwith the help of reference parameters.We discuss various real-life applications of SLDFSs towards digital image processing,network systems,vote casting,electrical engineering,medication,and selection of optimal choice.We show some drawbacks of operations of picture fuzzy sets and their corresponding aggregation operators.Some new operations on picture fuzzy sets are also introduced.Some fundamental operations on SLDFSs and different types of score functions of spherical linear Diophantine fuzzy numbers(SLDFNs)are proposed.New aggregation operators named spherical linear Diophantine fuzzy weighted geometric aggregation(SLDFWGA)and spherical linear Diophantine fuzzy weighted average aggregation(SLDFWAA)operators are developed for a robust MCDM approach.An application of the proposed methodology with SLDF information is illustrated.The comparison analysis of the final ranking is also given to demonstrate the validity,feasibility,and efficiency of the proposed MCDM approach.
基金The project was supported by the National Natural Science Fundation of China
文摘For satate form linear gram as Fang and sao deined and approach which would find an optimal solution by solving an anconstrained convex dual programming.Thedual was construcied by applying an emropic peturbation and a simple Inequality Inz【z-1 for z】0n,In this paper,we suggest than a paperbation functiontake the place of Inx such that the new approdt has good numerical stability andhas all properties of the original