The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these...The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these models.展开更多
In this paper, we discuss a discrete time repairable queuing system with Markovian arrival process, where lifetime of server, service time and repair time of server are all discrete phase type random variables. Using...In this paper, we discuss a discrete time repairable queuing system with Markovian arrival process, where lifetime of server, service time and repair time of server are all discrete phase type random variables. Using the theory of matrix geometric solution, we give the steady state distribution of queue length and waiting time. In addition, the stable availability of the system is also provided.展开更多
A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primit...A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.展开更多
Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of...Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of stable map germs of type ∑1 in singularity theory.展开更多
In this paper,we consider a GI/M/1 queue operating in a multi-phase service environment with working vacations and Bernoulli vacation interruption.Whenever the queue becomes empty,the server begins a working vacation ...In this paper,we consider a GI/M/1 queue operating in a multi-phase service environment with working vacations and Bernoulli vacation interruption.Whenever the queue becomes empty,the server begins a working vacation of random length,causing the system to move to vacation phase 0.During phase 0,the server takes service for the customers at a lower rate rather than stopping completely.When a vacation ends,if the queue is non-empty,the system switches from the phase 0 to some normal service phase i with probability qi,i=1,2,⋯,N.Moreover,we assume Bernoulli vacation interruption can happen.At a service completion instant,if there are customers in a working vacation period,vacation interruption happens with probability p,then the system switches from the phase 0 to some normal service phase i with probability qi,i=1,2,⋯,N,or the server continues the vacation with probability 1−p.Using the matrix geometric solution method,we obtain the stationary distributions for queue length at both arrival epochs and arbitrary epochs.The waiting time of an arbitrary customer is also derived.Finally,several numerical examples are presented.展开更多
Quasi-birth and death processes with block tridiagonal matrices find many applications in various areas. Neuts gave the necessary and sufficient conditions for the ordinary ergodicity and found an expression of the st...Quasi-birth and death processes with block tridiagonal matrices find many applications in various areas. Neuts gave the necessary and sufficient conditions for the ordinary ergodicity and found an expression of the stationary distribution for a class of quasi-birth and death processes. In this paper we obtain the explicit necessary and sufficient conditions for/-ergodicity and geometric ergodicity for the class of quasi-birth and death processes, and prove that they are not strongly ergodic. Keywords ergodicity, quasi-birth and death process.展开更多
文摘The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these models.
文摘In this paper, we discuss a discrete time repairable queuing system with Markovian arrival process, where lifetime of server, service time and repair time of server are all discrete phase type random variables. Using the theory of matrix geometric solution, we give the steady state distribution of queue length and waiting time. In addition, the stable availability of the system is also provided.
文摘A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19971035).
文摘Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of stable map germs of type ∑1 in singularity theory.
基金the National Natural Science Foundation of China(No.61773014)。
文摘In this paper,we consider a GI/M/1 queue operating in a multi-phase service environment with working vacations and Bernoulli vacation interruption.Whenever the queue becomes empty,the server begins a working vacation of random length,causing the system to move to vacation phase 0.During phase 0,the server takes service for the customers at a lower rate rather than stopping completely.When a vacation ends,if the queue is non-empty,the system switches from the phase 0 to some normal service phase i with probability qi,i=1,2,⋯,N.Moreover,we assume Bernoulli vacation interruption can happen.At a service completion instant,if there are customers in a working vacation period,vacation interruption happens with probability p,then the system switches from the phase 0 to some normal service phase i with probability qi,i=1,2,⋯,N,or the server continues the vacation with probability 1−p.Using the matrix geometric solution method,we obtain the stationary distributions for queue length at both arrival epochs and arbitrary epochs.The waiting time of an arbitrary customer is also derived.Finally,several numerical examples are presented.
基金partially supported by NSFC(No.10171009)Research Fund for PhD Programs of MOE of China(No.20010533001)Research Fund for Educational Innovation for Doctorates of CSU(No.030602)
文摘Quasi-birth and death processes with block tridiagonal matrices find many applications in various areas. Neuts gave the necessary and sufficient conditions for the ordinary ergodicity and found an expression of the stationary distribution for a class of quasi-birth and death processes. In this paper we obtain the explicit necessary and sufficient conditions for/-ergodicity and geometric ergodicity for the class of quasi-birth and death processes, and prove that they are not strongly ergodic. Keywords ergodicity, quasi-birth and death process.