期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of graph generation on slope stability analysis based on graph theory 被引量:2
1
作者 Enpu Li Xiaoying Zhuang +1 位作者 Wenbo Zheng Yongchang Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期380-386,共7页
Limit equilibrium method (LEM) and strength reduction method (SRM) are the most widely used methods for slope stability analysis. However, it can be noted that they both have some limitations in practical applicat... Limit equilibrium method (LEM) and strength reduction method (SRM) are the most widely used methods for slope stability analysis. However, it can be noted that they both have some limitations in practical application. In the LEM, the constitutive model cannot be considered and many assumptions are needed between slices of soil/rock. The SRM requires iterative calculations and does not give the slip surface directly. A method for slope stability analysis based on the graph theory is recently developed to directly calculate the minimum safety factor and potential critical slip surface according to the stress results of numerical simulation. The method is based on current stress state and can overcome the disadvantages mentioned above in the two traditional methods. The influences of edge generation and mesh geometry on the position of slip surface and the safety factor of slope are studied, in which a new method for edge generation is proposed, and reasonable mesh size is suggested. The results of benchmark examples and a rock slope show good accuracy and efficiency of the presented method. 展开更多
关键词 Graph theory Slope stability analysis Edge generation Mesh geometry
下载PDF
Advances in experimental methods for root system architecture and root development 被引量:1
2
作者 Jun-bang Wang Xiu-juan Zhang Chu Wu 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第1期23-32,共10页
Plant roots play important roles in acquisition of water and nutrients, storage, anchoring, transport, and symbiosis with soil microorganisms, thus quantitative researches on root developmental processes are essential... Plant roots play important roles in acquisition of water and nutrients, storage, anchoring, transport, and symbiosis with soil microorganisms, thus quantitative researches on root developmental processes are essential to understand root functions and root turnover in ecosystems,and at the same time such researches are the most difficult because roots are hidden underground. Therefore, how to investigate efficiently root functions and root dynamics is the core aspect in underground ecology. In this article, we reviewed some experimental methods used in root researches on root development and root system architecture, and summarized the advantages and shortages of these methods. Based on the analyses, we proposed three new ways to more understand root processes:(1) new experimental materials for root development;(2) a new observatory system comprised of multiple components, including many observatory windows installed in field, analysis software,and automatic data transport devices;(3) new techniques used to analyze quantitatively functional roots. 展开更多
关键词 Root system analysis Fractal geometry Novel materials
下载PDF
Modeling and optimization of a spherical triboelectric generator
3
作者 Jens Gravesen Morten Willatzen +1 位作者 Jiajia Shao Zhong Lin Wang 《Nano Research》 SCIE EI CSCD 2023年第9期11925-11931,共7页
A detailed geometric analysis of spherical triboelectric nanogenerators is presented.In comparison with earlier works on spherical triboelectric generators,the general case where the moving dielectric rolls on the ins... A detailed geometric analysis of spherical triboelectric nanogenerators is presented.In comparison with earlier works on spherical triboelectric generators,the general case where the moving dielectric rolls on the inside surface of the larger sphere of the TENG is discussed in terms of maximum energy harvesting.An optimization analysis of geometrical parameters allows various cases of electrode geometry,either in the form of a spherical circle,spherical ellipse,spherical rectangle,or spherical isosceles trapezium,to be solved.The analytical insight and computational effective models provided by differential geometry make the mathematical model superior compared to standard three-dimensional(3D)numerical methods. 展开更多
关键词 spherical triboelectric nanogenerator differential geometry analysis electrode shape study modeling and optimization
原文传递
Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data 被引量:8
4
作者 Wenting Luo Lin Li Kelvin C.P.Wang 《Journal of Traffic and Transportation Engineering(English Edition)》 2016年第2期137-145,共9页
Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditiona... Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis. 展开更多
关键词 Horizontal curve Inertial measurement unit (IMU) Curve radius Kinematic method geometry method Lateral acceleration method ANOVA test Curve safety analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部