期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Incorporating geotechnical and geophysical investigations for underground obstruction detection:A case study
1
作者 Yaohui Liu Yannick C.H.Ng +2 位作者 Yunhuo Zhang Ping Yang Taeseo Ku 《Underground Space》 SCIE EI CSCD 2023年第4期116-129,共14页
Determining the location and boundary of underground obstructions and/or anomalies is a common problem and often a great chal-lenge for tunneling and underground construction.In this study,geotechnical investigations(... Determining the location and boundary of underground obstructions and/or anomalies is a common problem and often a great chal-lenge for tunneling and underground construction.In this study,geotechnical investigations(penetration tests and borehole drilling/sam-pling)and geophysical investigations(surface wave method and cross-hole seismic method)were conducted with the aim of identifying the location and boundary of rock obstructions in Changi East,Singapore.The surface wave method is frequently used in the sites with lateral homogeneity in previous studies,but its application in the sites with rock obstructions is rare.The experimental results of this study indicate that the surface wave method is also able to determine the upper surface of rock obstructions,but difficult to identify the lateral and bottom boundaries of rock obstructions.To improve the precision of detection,the full waveform inversion(FWI)method was used to process the data from the cross-hole seismic survey.The results indicate that the inversion precision of P-wave is higher than that of S-wave.The horizontal and vertical ranges of rock obstructions in the P-wave inversion results are 14–26 m and 7.5–11.0 m respectively,roughly consistent with the results of penetration tests(about 15–25 m)and borehole log(8.85–10.80 m).This result proves that the sequential application of first-arrival time analysis and FWI can effectively delineate the boundary of rock obstruc-tions.Finally,the results of various detection methods were analyzed and compared in this study.Considering the advantages of various methods,we propose a cost-effective and high-precision workflow containing both geotechnical and geophysical investigations. 展开更多
关键词 FWI Geotechnical and geophysical investigations Cross-hole seismic method Surface wave method Obstruction detection
原文传递
Metallogenic model of the Shuangjianzishan Ag-Pb-Zn district,Northeast China:Revealed from integrated geophysical investigation
2
作者 Yihao Wu Jiangtao Han +9 位作者 Yunhe Liu Guoqing Ma Fuxing Han Yanchen Yang Lijia Liu Lei Guo Ye Guan Yinghui Zhang Zhenyu Guo Qian Mu 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期110-124,共15页
The Shuangjianzishan deposit in Inner Mongolia is a typical Ag-Pb-Zn deposit of the southern Great Xing’an Range.Proven reserves of Ag,Pb,and Zn in this deposit have reached the scale of super-large deposits,with fav... The Shuangjianzishan deposit in Inner Mongolia is a typical Ag-Pb-Zn deposit of the southern Great Xing’an Range.Proven reserves of Ag,Pb,and Zn in this deposit have reached the scale of super-large deposits,with favorable metallogenic conditions,strong prospecting signs,and high metallogenic potential.This paper reports a study involving integrated geophysical methods,including controlled-source audio-frequency magnetotelluric,gravity,magnetic,and shallow-seismic-reflection methods,to determine the spatial distribution of ore-controlling structures and subsurface intrusive rock for a depth range of<2000 m in the Shuangjianzishan ore district.The objective of this study is to construct a metallogenic model of the ore district and provide a scientific basis for the exploration of similar deposits in the deep and surrounding regions.We used three-dimensional inversion for controlled-source audio-frequency magnetotelluric data based on the limited memory quasi-Newton algorithm,and three-dimensional physical-property inversion for the gravity and magnetic data to obtain information about the subsurface distribution of ore-controlling structures and intrusive rocks.Under seismic reflection results,regional geology,petrophysical properties,and borehole information,the geophysical investigation shows that the Dashizhai group,which contains the main ore-bearing strata in the ore district,is distributed within a depth range of<1239 m,and is thick in the Xinglongshan ore block and the eastern part of the Shuangjianzishan ore block.The mineralization is spatially associated with a fault system characterized by NE-,NW-,and N-trending faults.The magnetic and electrical models identify large,deep bodies of intrusive rock that are inferred to have been involved in mineralization,with local shallow emplacement of some intrusions.Combining the subsurface spatial distributions of ore-bearing strata,ore-controlling faults,and intrusive rock,we propose two different metallogenic models for the Shuangjianzishan ore district,which provide a scientific basis for further prospecting in the deep regions of the ore district and surrounding areas. 展开更多
关键词 Ag-Pb-Zn deposit Integrated geophysical investigation 3D geophysical inversion Metallogenic model Shuangjianzishan in Inner Mongolia
下载PDF
Detection of Hazard Zones over Abandoned Mines of Albania through Geophysical Methods
3
作者 Idriz Jata Hamza Reci Vladimir Kavaia 《Journal of Earth Science and Engineering》 2012年第12期704-711,共8页
This study consists to the detection of cavities that could be present over abandoned mines of Albania with the use of SP (self potential) and ERT (electrical resistance tomography). In general, natural and artifi... This study consists to the detection of cavities that could be present over abandoned mines of Albania with the use of SP (self potential) and ERT (electrical resistance tomography). In general, natural and artificial cavities represent an important investigation target in geotechnical, environmental and scientific studies. These studies could be engineering, archaeological or speleological. For the detection and localization of such cavities during the last 20 years, several geophysical studies have been used worldwide. In this field study, several geophysical methods could be used such as electrical, electromagnetic, gravimetric and seismic ones. Now days, the ground penetrating radar technique and ERT are widely used. Depending on geological formation conditions every used method is more or less effective. As a result of actual conditions of works on ore mines, the dynamic regime of the surroundings areas has undergone changes creating superficial cavities and funnels and as consequence the geological risk to the community is present. The detection of cavities is a challenge for geophysicists and in these cases the ambiguity on interpretation of geophysical data has to be solved properly. The simultaneous application of different geophysical methods and monitoring in time are necessary in order that the field data interpretation could be significant. Geophysical investigations were carried out as tests over galleries of ore mines of Albania. In this study, we present the SP and ERT results in two sites, in Dhrovjan and Perrenjas region. The effectiveness of the used geophysical methods was present. 展开更多
关键词 ERT geological risk self potential FUNNELS CAVITIES geophysical investigation engineering geology
下载PDF
Geophysical Investigation of Groundwater Potentials of the Nanka Sand in Obosi and Its Environs, Anambra State Nigeria
4
作者 Nelson Onyebuchi Nwobi Solomon Ekene Okeke +1 位作者 Chekwube Nnamdi Didi Augustine Obiora Okpara 《Journal of Water Resource and Protection》 CAS 2022年第10期709-717,共9页
Geophysical investigation for Groundwater which entails the use of vertical electrical sounding (VES) methods was carried out in parts of the Idemili area of Anambra State, Nigeria. Geologically the study area falls w... Geophysical investigation for Groundwater which entails the use of vertical electrical sounding (VES) methods was carried out in parts of the Idemili area of Anambra State, Nigeria. Geologically the study area falls within the Nanka Sand, belonging to the Ameki Group in the Tertiary Niger Delta Basin. The investigation intends amongst others to assess the groundwater potential of the area, find out the existence of possible aquifer(s) within the area, and estimate the possible depth of a borehole. 15 VES stations were established at the site using Ohmega System Tetrameter and Schlumberger electrode configuration with current electrode spacing (AB/2) of 350 meters. The geologic parameters, such as the number of geo-electric layers, the thickness of the geo-electric units, and their resistivities were interpreted from the VES curves. A qualitative assessment of the curves shows that a model with 5 layers would sufficiently model the field curves. The thickness value ranged from 0.1 to 86 m, the resistivity ranged from 258 to 13,258 Ωm, and the depth ranged between 1.2 and 109 m. Quantitative interpretation of field curves involved inversion with appropriate parameters using Zond Res1D software. 展开更多
关键词 geophysical Investigation GROUNDWATER Electrical Resistivity Nanka Sand
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部