In this paper it has been presented the ELF Survey Meter and its application for investigation of presence of electric and magnetic fields strength in uranium conversion facilities,especially to investigate the effect...In this paper it has been presented the ELF Survey Meter and its application for investigation of presence of electric and magnetic fields strength in uranium conversion facilities,especially to investigate the effect of electric and magnetic sources on the operation of electrical controllers like PLC instruments, electrical drivers and actuators which are sensitive to presence of electrical and magnetic fields and also the effect of high voltage power lines展开更多
The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks i...The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.展开更多
The prospects for expanding the mineral resource base in many countries are linked with the exploration of stranded sites localized at unexplored areas with complex natural and landscape conditions that make any groun...The prospects for expanding the mineral resource base in many countries are linked with the exploration of stranded sites localized at unexplored areas with complex natural and landscape conditions that make any ground survey,including magnetic prospecting,difficult and expensive.The current level of geology requires high-precision and large-scale data at the first stages of geological exploration.Since 2012,technologies of aeromagnetic surveying with unmanned aircraft vehicles(UAV)enter the market,but most of them are based on big fixed-wing UAV and do not allow to substantially increase the level of survey granularity compared with traditional aerial methods.To increase the scale of survey,it is necessary to reduce the altitude and speed of flight,for which the authors develop the methodical and technical solutions described in this article.To obtain data at altitudes of 5 m above the terrain even in a rugged relief,we created heavy multirotor UAVs that are stable in flight and may be used in a wide range of environmental conditions(even a moderate snowfall),and develop a special software to generate flight missions on the basis of digital elevation models.A UAV has special design to reduce magnetic interference of the flight platform;the magnetic sensor is hung below the aircraft.This technology was conducted in a considerable amount of magnetic surveys in the mountainous regions of East Siberia between 2014 and 2016.The results of the comparison between airborne and ground surveys are presented,which show that the sensitivity of the developed system in conjunction with low-altitude measurements can cover any geologically significant anomalies of the magnetic field.An unmanned survey is cheaper and more productive;the multirotor-based technologies may largely replace traditional ground magnetic exploration in scales of 1:10,000−1:1000.展开更多
Superconducting quantum interference device(SQUID),with the advantages of ultra⁃high sensitivity,low noise,broad frequency bandwidth,and excellent low⁃frequency response,is widely used in several geophysical methods,s...Superconducting quantum interference device(SQUID),with the advantages of ultra⁃high sensitivity,low noise,broad frequency bandwidth,and excellent low⁃frequency response,is widely used in several geophysical methods,such as vector magnetic survey,electromagnetic method,gravity and gravity gradient measurement.In this paper,the latest technological progress of SQUID and SQUID⁃based geophysical precision measurement technology are described.In addition,the advantages,characteristics,and existing problems of each measurement technology are analyzed.Combined with the requirements of current geophysical technology,the future application prospect is discussed and development suggestions are given.展开更多
New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1...New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.展开更多
An electrical resistivity survey involving vertical electrical sounding (VES) technique was carried out in Issele-Azagba, Aniocha North Local Government Area of Delta State, Nigeria. This was aimed at investigating th...An electrical resistivity survey involving vertical electrical sounding (VES) technique was carried out in Issele-Azagba, Aniocha North Local Government Area of Delta State, Nigeria. This was aimed at investigating the lithologic boundaries and classification of the various subsurface formations. The data obtained were subjected to a twofold interpretative procedure involving initial partial curve matching and computer iteration. Results showed that a maximum of five subsurface layers was delineated from the geoelectric sections. This is made up of loamy topsoil underlain by relatively continuous sandy units composed of different compaction, wetness and clay content. The result also showed that the fifth substratum of the geoelectric section was the aquiferous sand relevant in groundwater development within the study area. Analysis of the result had shown that the aquifers identified in this study were vulnerable contamination percolating from the surface due to the absence of a protective aquitards.展开更多
文摘In this paper it has been presented the ELF Survey Meter and its application for investigation of presence of electric and magnetic fields strength in uranium conversion facilities,especially to investigate the effect of electric and magnetic sources on the operation of electrical controllers like PLC instruments, electrical drivers and actuators which are sensitive to presence of electrical and magnetic fields and also the effect of high voltage power lines
基金jointly supported by the project of Chinese National Natural Science Foundation(42107485)National Key R&D Program(2020YFC1512400,2018YFC800804)China Geological Survey(DD20190282,DD20221734,and DD20230323)。
文摘The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.
基金This work was supported by the Council on grants of the President of the Russian Federation[Grant Number MK-3608.2018.5].
文摘The prospects for expanding the mineral resource base in many countries are linked with the exploration of stranded sites localized at unexplored areas with complex natural and landscape conditions that make any ground survey,including magnetic prospecting,difficult and expensive.The current level of geology requires high-precision and large-scale data at the first stages of geological exploration.Since 2012,technologies of aeromagnetic surveying with unmanned aircraft vehicles(UAV)enter the market,but most of them are based on big fixed-wing UAV and do not allow to substantially increase the level of survey granularity compared with traditional aerial methods.To increase the scale of survey,it is necessary to reduce the altitude and speed of flight,for which the authors develop the methodical and technical solutions described in this article.To obtain data at altitudes of 5 m above the terrain even in a rugged relief,we created heavy multirotor UAVs that are stable in flight and may be used in a wide range of environmental conditions(even a moderate snowfall),and develop a special software to generate flight missions on the basis of digital elevation models.A UAV has special design to reduce magnetic interference of the flight platform;the magnetic sensor is hung below the aircraft.This technology was conducted in a considerable amount of magnetic surveys in the mountainous regions of East Siberia between 2014 and 2016.The results of the comparison between airborne and ground surveys are presented,which show that the sensitivity of the developed system in conjunction with low-altitude measurements can cover any geologically significant anomalies of the magnetic field.An unmanned survey is cheaper and more productive;the multirotor-based technologies may largely replace traditional ground magnetic exploration in scales of 1:10,000−1:1000.
基金National Natural Science Foundation of China(Grant No.41704172)the National Key Research and Development Project(Grant No.2017YFC0602000)the National Key Research and Development Project(Grant No.2016YFC0303000).
文摘Superconducting quantum interference device(SQUID),with the advantages of ultra⁃high sensitivity,low noise,broad frequency bandwidth,and excellent low⁃frequency response,is widely used in several geophysical methods,such as vector magnetic survey,electromagnetic method,gravity and gravity gradient measurement.In this paper,the latest technological progress of SQUID and SQUID⁃based geophysical precision measurement technology are described.In addition,the advantages,characteristics,and existing problems of each measurement technology are analyzed.Combined with the requirements of current geophysical technology,the future application prospect is discussed and development suggestions are given.
基金supported by the Russian Fund of Fundamental Research(Grant No.11-05-00280)
文摘New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.
文摘An electrical resistivity survey involving vertical electrical sounding (VES) technique was carried out in Issele-Azagba, Aniocha North Local Government Area of Delta State, Nigeria. This was aimed at investigating the lithologic boundaries and classification of the various subsurface formations. The data obtained were subjected to a twofold interpretative procedure involving initial partial curve matching and computer iteration. Results showed that a maximum of five subsurface layers was delineated from the geoelectric sections. This is made up of loamy topsoil underlain by relatively continuous sandy units composed of different compaction, wetness and clay content. The result also showed that the fifth substratum of the geoelectric section was the aquiferous sand relevant in groundwater development within the study area. Analysis of the result had shown that the aquifers identified in this study were vulnerable contamination percolating from the surface due to the absence of a protective aquitards.