In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matri...In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(HEO)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral.展开更多
The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, ...The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, called liquid precursor, at a different solid/liquid mass ratio depending on their normal consistency to produce geopolymer binders. Results show that the geopolymer products obtained from the different clays have good physichomechanical properties: their open porosity and their water absorption rate decrease while their compressive strength and their apparent density increase with the increase in calcination temperature of the clays. The density of GABD binders varies between 2.92 and 2.47 g/cm<sup>3</sup> and that of GARD binders between 1.86 and 2.16 g/cm<sup>3</sup>. Specimens in the GABD series have the best mechanical performance, ranging from 14.43 to 31.37 MPa, while those in the GARD series oscillate between 6.18 and 11.56 MPa. These properties make kaolinite materials from this region suitable for use as construction materials for adequate waterproof structures.展开更多
基金Project(2009CB623200) supported by the National Basic Research Program of ChinaProjects(50702014, 50878043) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0116) supported by the Program for New Century Excellent Talents in University of Ministry of Education, China
文摘In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(HEO)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral.
文摘The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, called liquid precursor, at a different solid/liquid mass ratio depending on their normal consistency to produce geopolymer binders. Results show that the geopolymer products obtained from the different clays have good physichomechanical properties: their open porosity and their water absorption rate decrease while their compressive strength and their apparent density increase with the increase in calcination temperature of the clays. The density of GABD binders varies between 2.92 and 2.47 g/cm<sup>3</sup> and that of GARD binders between 1.86 and 2.16 g/cm<sup>3</sup>. Specimens in the GABD series have the best mechanical performance, ranging from 14.43 to 31.37 MPa, while those in the GARD series oscillate between 6.18 and 11.56 MPa. These properties make kaolinite materials from this region suitable for use as construction materials for adequate waterproof structures.