连线干涉测量(Connected Element Interferometry,CEI)是一种全天时全天候的被动测角技术,已用于空间目标的跟踪监视.地球静止轨道(Geostationary Earth Orbit,GEO)卫星需要频繁机动以保持轨位或完成其他任务,其机动后的快速轨道恢复能...连线干涉测量(Connected Element Interferometry,CEI)是一种全天时全天候的被动测角技术,已用于空间目标的跟踪监视.地球静止轨道(Geostationary Earth Orbit,GEO)卫星需要频繁机动以保持轨位或完成其他任务,其机动后的快速轨道恢复能力对于监视预警极为重要.针对基于CEI的GEO短弧定轨和预报,分析了定轨算法的形亏和数亏,在附加先验轨道约束的短弧定轨基础上,提出了轨道半长轴初值的自适应优化方法.利用亚太七号卫星的CEI仿真和实测数据进行了短弧定轨和预报,实验结果表明,采用优化后的半长轴初值,30min短弧定轨和10min预报的卫星位置分量精度均优于4km,能够满足非合作GEO目标机动后快速轨道恢复的需求.展开更多
The Combined-GEO-IGSO constellation is the combination of Geostationary Earth Orbit(GEO) satellite and Inclining GeoSynchronous Orbit(IGSO) satellite.The Combined-GEO-IGSO constellation can integrate the advantages of...The Combined-GEO-IGSO constellation is the combination of Geostationary Earth Orbit(GEO) satellite and Inclining GeoSynchronous Orbit(IGSO) satellite.The Combined-GEO-IGSO constellation can integrate the advantages of GEO and IGSO to achieve regional coverage.In order to discuss the performances of the Combined-GEO-IGSO constellation,the performances of coverage,elevation,diversity,and transmission are simulated in China and surrounding regions by Satellite Tool Kit(STK).The simulation results show that:the combined constellation can reach higher multi-satellite coverage and higher communication elevation in China and surrounding areas;the Doppler shift,delay,and propagation loss of this constellation have little impact on the system.As regional coverage constellation,the Combined-GEO-IGSO is feasible.展开更多
The quality of BeiDou Navigation Satellite System(BDS)Geostationary Earth Orbit(GEO)ultrarapid products is unsatisfactory because GEO satellites are nearly stationary relative to ground stations.To optimize the qualit...The quality of BeiDou Navigation Satellite System(BDS)Geostationary Earth Orbit(GEO)ultrarapid products is unsatisfactory because GEO satellites are nearly stationary relative to ground stations.To optimize the quality of these ultra-rapid orbit products,we investigated the effects of the fitting arc length,an a priori Solar-Radiation Pressure(SRP)model,and the along-track empirical acceleration on the prediction of BDS GEO satellite orbits.The predicted orbit arcs of 24-h were evaluated through comparisons with the corresponding observed orbit arc and Satellite Laser Ranging(SLR)observations.In both eclipse and non-eclipse seasons,accuracy of the orbit predictions obtained using a 48-h fitting arc length were better than those obtained using 24-h and 72-h fitting arc lengths.Although the overlapping precision of predicted orbits exhibited no obvious improvement when an a priori SRP model was employed,the systematic bias in the SLR residuals was significantly reduced.Specifically,the mean value of SLR residuals decreased from−0.248 m to−0.024 m during non-eclipse seasons and from−0.333 m to−0.041 m during eclipse seasons,respectively.In addition,when an empirical acceleration in the along-track direction was introduced,the three-Dimensional Root-Mean-Square(3D RMS)of overlapping orbits during eclipse seasons decreased from 2.964 to 1.080 m,which is comparable to that during non-eclipse seasons.Furthermore,the Standard Deviation(STD)of SLR residuals decreased from 0.419 to 0.221 m during eclipse seasons.The analysis of SRP estimates shows that the stability of SRP parameters was significantly enhanced after the introduction of along-track empirical acceleration in eclipse seasons.The optimal BDS GEO ultra-rapid orbit prediction products were yielded by using a 48-h fitting arc length,an a priori SRP model and an along-track empirical acceleration.展开更多
文摘连线干涉测量(Connected Element Interferometry,CEI)是一种全天时全天候的被动测角技术,已用于空间目标的跟踪监视.地球静止轨道(Geostationary Earth Orbit,GEO)卫星需要频繁机动以保持轨位或完成其他任务,其机动后的快速轨道恢复能力对于监视预警极为重要.针对基于CEI的GEO短弧定轨和预报,分析了定轨算法的形亏和数亏,在附加先验轨道约束的短弧定轨基础上,提出了轨道半长轴初值的自适应优化方法.利用亚太七号卫星的CEI仿真和实测数据进行了短弧定轨和预报,实验结果表明,采用优化后的半长轴初值,30min短弧定轨和10min预报的卫星位置分量精度均优于4km,能够满足非合作GEO目标机动后快速轨道恢复的需求.
基金Supported by the National Natural Science Foundation of China (No. 60972061,No. 60972062,and No. 61032004)the National High Technology Research and Development Program of China ("863" Program) (No. 2008AA12A204)the Natural Science Foundation of Jiangsu Province(BK2009060)
文摘The Combined-GEO-IGSO constellation is the combination of Geostationary Earth Orbit(GEO) satellite and Inclining GeoSynchronous Orbit(IGSO) satellite.The Combined-GEO-IGSO constellation can integrate the advantages of GEO and IGSO to achieve regional coverage.In order to discuss the performances of the Combined-GEO-IGSO constellation,the performances of coverage,elevation,diversity,and transmission are simulated in China and surrounding regions by Satellite Tool Kit(STK).The simulation results show that:the combined constellation can reach higher multi-satellite coverage and higher communication elevation in China and surrounding areas;the Doppler shift,delay,and propagation loss of this constellation have little impact on the system.As regional coverage constellation,the Combined-GEO-IGSO is feasible.
基金supported by the National Natural Science Foundation of China[grant number:41904021].
文摘The quality of BeiDou Navigation Satellite System(BDS)Geostationary Earth Orbit(GEO)ultrarapid products is unsatisfactory because GEO satellites are nearly stationary relative to ground stations.To optimize the quality of these ultra-rapid orbit products,we investigated the effects of the fitting arc length,an a priori Solar-Radiation Pressure(SRP)model,and the along-track empirical acceleration on the prediction of BDS GEO satellite orbits.The predicted orbit arcs of 24-h were evaluated through comparisons with the corresponding observed orbit arc and Satellite Laser Ranging(SLR)observations.In both eclipse and non-eclipse seasons,accuracy of the orbit predictions obtained using a 48-h fitting arc length were better than those obtained using 24-h and 72-h fitting arc lengths.Although the overlapping precision of predicted orbits exhibited no obvious improvement when an a priori SRP model was employed,the systematic bias in the SLR residuals was significantly reduced.Specifically,the mean value of SLR residuals decreased from−0.248 m to−0.024 m during non-eclipse seasons and from−0.333 m to−0.041 m during eclipse seasons,respectively.In addition,when an empirical acceleration in the along-track direction was introduced,the three-Dimensional Root-Mean-Square(3D RMS)of overlapping orbits during eclipse seasons decreased from 2.964 to 1.080 m,which is comparable to that during non-eclipse seasons.Furthermore,the Standard Deviation(STD)of SLR residuals decreased from 0.419 to 0.221 m during eclipse seasons.The analysis of SRP estimates shows that the stability of SRP parameters was significantly enhanced after the introduction of along-track empirical acceleration in eclipse seasons.The optimal BDS GEO ultra-rapid orbit prediction products were yielded by using a 48-h fitting arc length,an a priori SRP model and an along-track empirical acceleration.