[Objective] This study aimed to construct the full-length cDNA library for ger- minating seeds of Phyllostachys heterocycla [Method] Germinating seeds of P. hetero- cycla were used as experimental materials to constru...[Objective] This study aimed to construct the full-length cDNA library for ger- minating seeds of Phyllostachys heterocycla [Method] Germinating seeds of P. hetero- cycla were used as experimental materials to construct the full-length cDNA library by using Oligo-capping method. [Result] The constructed library has a total capacity of 6.5×10^6 recombinant clones, and a low proportion of clones without inserted frag- ments; the size of inserted fragments ranges between 0.3-5.0 kb, with strict classifi- cation and ideal consistency. Furthermore, the proportion of clones harboring long in- serted fragments (1.0-5.0 kb) is as high as 30%, achieving the standard for high- quality full-length cDNA library. [Conclusion] The full-length cDNA library of germinat- ing seeds of P. heterocycla was successfully constructed, which laid important foun- dation for the functional genomics research of bamboo plants.展开更多
The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of c...The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of chlorophyll_protein complexes showed that there was only the light harvesting chlorophyll a/b protein complex from PSⅡ (LHCⅡ) precursor in chloroplast from lotus seeds germinated for 2 to 6 days, while LHC Ⅱ 1, and the chlorophyll_protein complex of PSⅠ (CPⅠ) appeared on the 8th day of germination and PSⅡ reaction center complex appeared later. Studies on the polypeptides composition of the chloroplast revealed the following results: 1) Small amount of the 27 kD polypeptide was synthesized in invisible light; 2) The 30 kD polypeptide existed previously in the plumules of the dry seeds; 3) The amount of the 30 kD polypeptide was more than any other polypeptides before germination and decreased gradually throughout germination, while the 27 kD polypeptide changed in the opposite way; 4) In the process of germination, measurement of the electron transport rate and the fluorescence induction kinetics at room temperature showed that PSⅡ activities and efficiency of primary light energy transformation were only experimentally measurable after 7 days of germination and gradually increased afterwards. At the same time, the chl a/b ratio rose from the lower value to normal; 5) The changes of chloroplast membrane components and its functions are concomitant in concert with that of the ultrastructure of chloroplast membranes during germination, as shown in our earlier work . The results have proved again that a different developmental pathway of chloroplast is likely to exist in the lotus plumules, which might provide an important clue for N. nucifera in having an unique position in the phylogeny of the angiosperm.展开更多
To determine biochemical changes during the germination of rice grains (Oryza sativa L. subsp, indica var. Mottaikaruppan) and to improve germination rate using gibberellic acid and surfactants [sodium dodecyl sulfa...To determine biochemical changes during the germination of rice grains (Oryza sativa L. subsp, indica var. Mottaikaruppan) and to improve germination rate using gibberellic acid and surfactants [sodium dodecyl sulfate (SDS) (1.0 g/L) and Triton-X-100 (1.0 mL/L)], whole rice grains soaked in distilled water for 12 h at 30℃were germinated in the dark at 30℃ for five days. The highest germination rate (77.1%) was obtained on the 5th day. An increase in the content of reducing sugars from 7.3 to 58.1 mg/g DM (dry matter) was observed from the 1st day of germination. Free amino acids and soluble protein contents increased to 3.69 and 5.29 mg/g DM, respectively on the 5^th day of germination. Total protein content decreased from 100.5 to 91.0 g/kg DM during germination. Increases in amylolytic (1.1 to 190.0 U/g DM) and proteolytic (0 to 0.12 U/g DM) activities were observed during germination. Effects of different concentrations of gibberellic acid on the germination of rice grains were evaluated and 0.1 g/L was found to promote germination. When effects of gibberellic acid (0.1 g/L) and surfactants were evaluated individually and together, higher germination rate was observed in the control experiment (grains germinated in distilled water), whereas giberellic acid and surfactants decreased the germination rate. Therefore, the flour obtained from the grains germinated for four days using distilled water to obtain high content of soluble materials and enzyme activities can be used in preparation of bakery items.展开更多
Dioscorea nippnica Mak is an important traditional Chinese medicinal material with significant economic value. Seeds of Dioscorea nippnica Mak were collected from three forest areas. Germination experiment was carried...Dioscorea nippnica Mak is an important traditional Chinese medicinal material with significant economic value. Seeds of Dioscorea nippnica Mak were collected from three forest areas. Germination experiment was carried out with three mediums. Experimental results showed that the species had lower percentage of germination on all mediums. The limiting factors for germination were analyzed.展开更多
Olive (Olea europaea L.) tree is one of the most extensive and important agricultural crop in Mediterranean countries due to its beneficial health and nutritional properties and its high economic value. Currently, oli...Olive (Olea europaea L.) tree is one of the most extensive and important agricultural crop in Mediterranean countries due to its beneficial health and nutritional properties and its high economic value. Currently, olive tree constitutes the sixth most important cultivated plant in the world, spreading from the Mediterranean region of origin to new production areas such as Australia, South and North America and South Africa. However, the mobilization processes of storage materials i.e. reserve proteins during seed germination, which are largely involved in essential physiological process including plant growth and development, remain poorly understood. Morphometric and immunohistochemistry analyses of protein bodies contained in olive seed storage tissues, cotyledon and endosperm, were performed by using different microscopy techniques, including light (bright-field and fluorescence) microscopy and transmission electron microscopy. Furthermore, we used legumin-like proteins (11S-type globulins) as a molecular marker to study the mobilization of reserve proteins from PBs of cotyledons at germinating seedling stages by using immunofluorescence assays. Results demonstrated that cotyledon and endosperm are characterized by distinct PBs populations containing legumin-like proteins, distinctly discriminated by the number of PBs per cell and tissue, size, immunofluorescence and histochemical staining. These features reflect differential PBs biogenesis during development and maturation processes in olive seed tissues endosperm and cotyledon, in relation to proteins (polypeptides) final composition, SSPs processing and/or packaging during seed maturation. Three different mobilization patterns of legumin-like proteins were identified for the first time in cotyledon PBs during seedling germinating process. Mature proteins composition and/or processing, cell types and enzyme composition and/or differential activation have been discussed as key features determining how proteins mobilize from PBs for further degradation in the cotyledon.展开更多
The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylest...The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.展开更多
As the‘Green Revolution’gene,SD1(encoding GA20ox2),has been widely applied to improve yield in rice breeding.However,research on its transcriptional regulation is limited.Here,we identified a transcription factor Os...As the‘Green Revolution’gene,SD1(encoding GA20ox2),has been widely applied to improve yield in rice breeding.However,research on its transcriptional regulation is limited.Here,we identified a transcription factor OsbZIP01,which can suppress the expression of SD1 and regulate gibberellin(GA)biosynthesis in rice.Knockout mutants of OsbZIP01 exhibited increased plant height,while the overexpression lines showed a semi-dwarf phenotype and diminished germination rate.Furthermore,the semi-dwarf phenotype of OE-bZIP01,was caused by the reduced internode length,which was accompanied by a thin stem width.The predominant expression of OsbZIP01 was observed in leaves and sheaths.OsbZIP01 protein was localized in the nucleus and showed transcriptional repression activity.In addition,OsbZIP01 could directly bind to the promoter of the OsSD1 gene,and inhibit its transcription.The semi-dwarf phenotype of OE-bZIP01 could be rescued by exogenous GA_(3).Meanwhile,the bzip01 sd1 double mutant showed a shorter shoot length compared with the wild type,indicating that OsbZIP01 regulated plant growth mainly through the GA biosynthesis pathway.Collectively,OsbZIP01 negatively regulates GA biosynthesis by restraining SD1 transcription,thereby affecting plant growth and development.展开更多
The seed predator satiation hypothesis states that high seed abundance can satiate seed predators or seed dispersers,thus promoting seed survival.However,for rapidly germinating seeds in tropical forests,high seed abu...The seed predator satiation hypothesis states that high seed abundance can satiate seed predators or seed dispersers,thus promoting seed survival.However,for rapidly germinating seeds in tropical forests,high seed abundance may limit dispersal as the seeds usually remain under parent trees for long periods,which may lead to high mortality due to rodent predation or fungal infestations.By tracking 2 species of rapidly germinating seeds(Pittosporopsis kerrii,family Icacinaceae;Camellia kissi,family Theaceae),which depend on dispersal by scatter-hoarding rodents,we investigated the effects of seed abundance at the community level on predation and seed dispersal in the tropical forest of Xishuangbanna Prefecture,Southwest China.We found that high seed abundance at the community level was associated with delayed and reduced seed removal,decreased dispersal distance and increased pre-dispersal seed survival for both plant species.High seed abundance was also associated with reduced seed caching of C.kissi,but it showed little effect on seed caching of P.kerrii.However,post-dispersal seed survival for the 2 plant species followed the reverse pattern.High seed abundance in the community was associated with higher post-dispersal survival of P.kerrii seeds,but with lower post-dispersal survival of C.kissi seeds.Our results suggest that different plant species derive benefit from fluctuations in seed production in different ways.展开更多
Trichophyton rubrum is a dominating superficial dermatophyte, whose conidial germination is corre- lated to pathopoiesis and a highly important developmental process. To investigate the changes of physiology, biochemi...Trichophyton rubrum is a dominating superficial dermatophyte, whose conidial germination is corre- lated to pathopoiesis and a highly important developmental process. To investigate the changes of physiology, biochemistry and cytology during the germination, we selected 3364 function identified ESTs from T. rubrum cDNA library to construct cDNA microarrays, and compared the gene expression levels of conidia and germinating phase. Data analysis indicated that 335 genes were up-regulated during the germination, which mainly encoded translated, modified proteins and structural proteins. The constituents of cell wall and cell membrane were synthetized abundantly, suggesting that they are the foundation of cell morphogenesis. The ingredients of the two-component signal transduction sys- tem were up-regulated, presuming that they were important for the conidial germination. Genes of various metabolic pathways were expressed prosperously, especially the genes that participated in glycolysis and oxidative phosphorylation were up-regulated on the whole, demonstrating that in the environment with sufficient oxygen and glucose, conidia obtained energy through aerobic respiration. This paper provides important clues which are helpful to understanding the changes in gene expres- sion, signal conduction and metabolism characteristics during T. rubrum conidial germination, and possess significant meaning to the study of other superficial dermatophytes.展开更多
Pre-harvest sprouting(PHS)poses a significant global challenge to cereal production,impacting both yield and quality.In this study,we employed genome-wide association studies(GWAS)on diverse rice accessions to identif...Pre-harvest sprouting(PHS)poses a significant global challenge to cereal production,impacting both yield and quality.In this study,we employed genome-wide association studies(GWAS)on diverse rice accessions to identify novel PHS-associated haplotypes.An assessment of 127 cultivated accessions for panicle germination(PHS)and detached grain germination(germination rate of detached grains at the 14th day(D14))revealed considerable phenotypic variation among rice ecotypes.GWAS analysis identified 91 significant signals at–log10(P-value)>5,including 15SNPs for PHS and 76 SNPs for D14.A subsequent linkage disequilibrium(LD)block-based GWAS analysis detected 227 significant SNPs for both traits,consisting of 18 nonsynonymous substitutions located on the coding regions of nine genes.Further haplotype analysis identified 32 haplotypes,with 10 specific to cultivated accessions,19 specific to the wild type,and three shared between them.A phenotypic assessment of major haplotypes revealed significant differences between resistant(Hap1 and Hap2)and susceptible haplotypes(Hap5,Hap27,and Hap28),distinguished by a G/A SNP within a novel gene,Os04g0545200.The identified haplotypes offer promising prospects for haplotypebased breeding aimed at enhancing PHS resistance in rice.展开更多
Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly ...Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.展开更多
Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germinat...Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.展开更多
Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective see...Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective seed priming method that would ensure the potential yield of wheat in Bangladesh,two experiments were carried out from December 2021 to March 2022 at the Department of Agronomy,Bangladesh Agricultural University.Two wheat varieties namely BARI Gom-28 and BWMRI Gom-1 were subjected to a range of priming chemicals in both lab and pot tests.These compounds included the following:control(no priming),hydropriming(distilled water),10000 ppm KNO_(3),15000 ppm KNO_(3),40000 ppm Mannitol,60000 ppm Mannitol,10000 ppm NaCl,20000 ppm NaCl,100 ppm PEG,150 ppm PEG,500 ppm NaOCl,1000 ppm NaOCl,10000 ppm CaCl_(2),20000 ppm CaCl_(2),10000 ppm KCl and 20000 ppm KCl.A complete randomized design(CRD)with three repli-cations was used to set up the experiments.The results showed that BARI Gom-28 and BWMRI Gom-1 responded best to KCl priming in terms of rapid seed germination and strong seedling development.On the other hand,the best priming agents for plant growth and productivity turned out to be CaCl_(2) and KCL.The results of this study support the possibility of using seed priming as a technique to improve wheat plant development and output by raising seed emergence and survival rates.展开更多
The use of biochar can have several effects on plant germination,depending on raw material,preparation method and application dose.However,the molecular mechanisms that lead to those results have yet to be elucidated....The use of biochar can have several effects on plant germination,depending on raw material,preparation method and application dose.However,the molecular mechanisms that lead to those results have yet to be elucidated.The aim of this research was to improve the understanding of these mechanisms by characterizing the metabolic effects of sugarcane bagasse biochar on soybean germination.Three types of biochars were prepared by pyrolysis at 300℃(SCB300),400℃(SCB400)and 600℃(SCB600).Then,each one was mixed into sand at 1%,3%,5%(w/w)dose,respectively.The experiment was performed in 8 days of incubation,when the number of germinated seeds and the average radicle length were determined.To evaluate the metabolome,the dry biomass(DB)was subjected to extraction with a mixture of methanol-d4 and D2O(1:1 v/v).The extracts were submitted to metabolomics analysis by Proton Nuclear Magnetic Resonance.The Relative Germination,Relative Average Radicle Growth and Germination Index increased in all treatments compared to control.On the other hand,the DB increased in all treatments,except for SCB300,at doses of 1%and 3%w/w.Seven metabolites(alanine,asparagine,acetic acid,citric acid,glycerol,fatty acids and sucrose)were identified and quantified in DB extracts as the most influential finding for the separation of treatments.Taken together,these results strongly suggested that biochars accelerated the catabolism of triacylglycerols to sucrose and induced a slight osmotic stress.展开更多
Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for...Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for soil quality improvement,necessitates the identification of salt-tolerant varieties and germplasms to effectively utilize and enhance saline-alkali land.In this study,we assessed the salt tolerance of 435 soybean varieties and germplasms during the seedling stage.Among them,Qihuang34,You2104,Hongzhudou,Pamanheidou,and Osage exhibited grade 1 salt tolerance rates surpassing other tested materials.Furthermore,Hongzhudou and Qihuang34 demonstrated higher salt tolerance during germination and emergence stages based on their elevated rates of emergence,salt tolerance index,chlorophyll content,and shoot fresh weights.Overall findings provide valuable resources for molecular breeding efforts aimed at developing salt-tolerant soybean varieties suitable for cultivation in saline-alkali soils.展开更多
To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design ...To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design methodsto investigate the seed coating formula and physical properties of Tartary buckwheat. The specific effects ofeach component on Tartary buckwheat seed germination are analyzed. The findings reveal that the seed coatingagent formulated with 1.5% polyvinyl alcohol, 0.15% sodium alginate, 0.2% op-10, 0.1% polyacrylamide, 8% colorant,3% ammonium sulfate, 1% potassium dihydrogen phosphate, and 0.15% carbendazim exhibits the mosteffective coating. It demonstrates optimal physical properties and promotes seed germination efficiently. The suspensionrate of this seed coating agent reaches 91.12%, with a mere 2.13% coating shedding rate and 2.5% coatingseed rot rate. Furthermore, it achieves a germination percentage of 99.17%, which is 20.84% higher than the lowestgroup. The germination potential and index are also significantly higher than the lowest group, with anincrease of 20.84% and 26.56%, respectively. Additionally, the vitality index is 553.08, a 15.75% increase comparedto the lowest group. The application of seed coating agents helps reduce seed resource loss, increase plant numbers,and ultimately enhance agricultural yields. This finding holds practical significance in agriculturalproduction.展开更多
[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as...[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.展开更多
In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. La...In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.展开更多
Self-Incompatibility (SI) Is a genetic mechanism of self/non-self pollen recognition to prevent self-fertilization In many flowering plants and, In most cases, this is controlled by a multl-allellc S-locus. S-RNase ...Self-Incompatibility (SI) Is a genetic mechanism of self/non-self pollen recognition to prevent self-fertilization In many flowering plants and, In most cases, this is controlled by a multl-allellc S-locus. S-RNase and Slocus F box (SLF) proteins have been shown to be the female and male determinants of gametophytlc selfIncompatibility (GSI), respectively, In the Solanaceae, Scrophulariaceae and Rosaceae. Nevertheless, It is thought that additional factors are required for the SI response. Herein, we constructed a mature anther cDNA library from a self-Incompatible Petunia hybrida Vllm. line of the S3S3 haplotype. Using AhS2-RNase from Antirrhinum hispanicum as a bait for yeast two-hybrid screening, we found that petunia germinating pollen (PGP) S/D3 was capable of Interacting physically with the bait. However, the Interaction lacked haplotype specificity. The PGPS/D3 gene Is a single copy gene that Is expressed In tissues such as the style, ovary, pollen, and leaf. The PGPS/D3::GFP (green fluorescence protein) construct was detected In both the membrane and cytoplasm. The Implications of these findings In the operation of S-RNase-based SI are discussed.展开更多
The effect of litter on forest regeneration depends on the characteristics of regional climate and also shows community specificity. The influences of plant litter on seed germination and seedling growth of Larch Sibe...The effect of litter on forest regeneration depends on the characteristics of regional climate and also shows community specificity. The influences of plant litter on seed germination and seedling growth of Larch Siberian forest in the Altai Mountains were investigated through two simulated experiments including litter coverage and litter aqueous extracts. In the litter coverage experiment, three litter coverage methods including above (D), below (S) and in the middle (Z) of litter were set with the litter coverage thickness of 0, 1, 2, and 4 cm, while two aqueous extract obtained methods using the air-dried litter and litter ash after fir were used with the concentration of 10%, 40%, 80% and 100% in the present study. Results showed that: the aqueous extracts obtained using the air-dried litter restrained the seed germination, while the aqueous extracts obtained using litter ash improved the seed germination. Compared with other litter concentration, the influences of 100% concentration reach highest. The seed germination rate, seed germination potential and vital index under the treatment of seeds above the litter coverage were highest, which were significantly higher than other treatments. The above-ground biomass was significantly higher and the inhibition index of below-ground bio-mass was significantly lower under the treatment of seed above the litter with thin litter cover-age (S1) compared to other litter coverage treatments. These results indicated that the litter aqueous extract and the litter coverage had a combined effect on the seed germination and seedling growth of Siberian larch forest. Fire disturbance could promote seed germination by modifying the adverse effects of litter aqueous extracts and litter coverage, and thus plays an important role in the regeneration of Siberian larch in the Altai Mountains.展开更多
基金Supported by Specialized Fund for the Basic Research Operating Expenses Program of International Centre for Bamboo and Rattan(163201300812618-7)Special Fund for Research and Development of Forestry Nonprofit Industry(200704001)~~
文摘[Objective] This study aimed to construct the full-length cDNA library for ger- minating seeds of Phyllostachys heterocycla [Method] Germinating seeds of P. hetero- cycla were used as experimental materials to construct the full-length cDNA library by using Oligo-capping method. [Result] The constructed library has a total capacity of 6.5×10^6 recombinant clones, and a low proportion of clones without inserted frag- ments; the size of inserted fragments ranges between 0.3-5.0 kb, with strict classifi- cation and ideal consistency. Furthermore, the proportion of clones harboring long in- serted fragments (1.0-5.0 kb) is as high as 30%, achieving the standard for high- quality full-length cDNA library. [Conclusion] The full-length cDNA library of germinat- ing seeds of P. heterocycla was successfully constructed, which laid important foun- dation for the functional genomics research of bamboo plants.
文摘The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of chlorophyll_protein complexes showed that there was only the light harvesting chlorophyll a/b protein complex from PSⅡ (LHCⅡ) precursor in chloroplast from lotus seeds germinated for 2 to 6 days, while LHC Ⅱ 1, and the chlorophyll_protein complex of PSⅠ (CPⅠ) appeared on the 8th day of germination and PSⅡ reaction center complex appeared later. Studies on the polypeptides composition of the chloroplast revealed the following results: 1) Small amount of the 27 kD polypeptide was synthesized in invisible light; 2) The 30 kD polypeptide existed previously in the plumules of the dry seeds; 3) The amount of the 30 kD polypeptide was more than any other polypeptides before germination and decreased gradually throughout germination, while the 27 kD polypeptide changed in the opposite way; 4) In the process of germination, measurement of the electron transport rate and the fluorescence induction kinetics at room temperature showed that PSⅡ activities and efficiency of primary light energy transformation were only experimentally measurable after 7 days of germination and gradually increased afterwards. At the same time, the chl a/b ratio rose from the lower value to normal; 5) The changes of chloroplast membrane components and its functions are concomitant in concert with that of the ultrastructure of chloroplast membranes during germination, as shown in our earlier work . The results have proved again that a different developmental pathway of chloroplast is likely to exist in the lotus plumules, which might provide an important clue for N. nucifera in having an unique position in the phylogeny of the angiosperm.
文摘To determine biochemical changes during the germination of rice grains (Oryza sativa L. subsp, indica var. Mottaikaruppan) and to improve germination rate using gibberellic acid and surfactants [sodium dodecyl sulfate (SDS) (1.0 g/L) and Triton-X-100 (1.0 mL/L)], whole rice grains soaked in distilled water for 12 h at 30℃were germinated in the dark at 30℃ for five days. The highest germination rate (77.1%) was obtained on the 5th day. An increase in the content of reducing sugars from 7.3 to 58.1 mg/g DM (dry matter) was observed from the 1st day of germination. Free amino acids and soluble protein contents increased to 3.69 and 5.29 mg/g DM, respectively on the 5^th day of germination. Total protein content decreased from 100.5 to 91.0 g/kg DM during germination. Increases in amylolytic (1.1 to 190.0 U/g DM) and proteolytic (0 to 0.12 U/g DM) activities were observed during germination. Effects of different concentrations of gibberellic acid on the germination of rice grains were evaluated and 0.1 g/L was found to promote germination. When effects of gibberellic acid (0.1 g/L) and surfactants were evaluated individually and together, higher germination rate was observed in the control experiment (grains germinated in distilled water), whereas giberellic acid and surfactants decreased the germination rate. Therefore, the flour obtained from the grains germinated for four days using distilled water to obtain high content of soluble materials and enzyme activities can be used in preparation of bakery items.
文摘Dioscorea nippnica Mak is an important traditional Chinese medicinal material with significant economic value. Seeds of Dioscorea nippnica Mak were collected from three forest areas. Germination experiment was carried out with three mediums. Experimental results showed that the species had lower percentage of germination on all mediums. The limiting factors for germination were analyzed.
文摘Olive (Olea europaea L.) tree is one of the most extensive and important agricultural crop in Mediterranean countries due to its beneficial health and nutritional properties and its high economic value. Currently, olive tree constitutes the sixth most important cultivated plant in the world, spreading from the Mediterranean region of origin to new production areas such as Australia, South and North America and South Africa. However, the mobilization processes of storage materials i.e. reserve proteins during seed germination, which are largely involved in essential physiological process including plant growth and development, remain poorly understood. Morphometric and immunohistochemistry analyses of protein bodies contained in olive seed storage tissues, cotyledon and endosperm, were performed by using different microscopy techniques, including light (bright-field and fluorescence) microscopy and transmission electron microscopy. Furthermore, we used legumin-like proteins (11S-type globulins) as a molecular marker to study the mobilization of reserve proteins from PBs of cotyledons at germinating seedling stages by using immunofluorescence assays. Results demonstrated that cotyledon and endosperm are characterized by distinct PBs populations containing legumin-like proteins, distinctly discriminated by the number of PBs per cell and tissue, size, immunofluorescence and histochemical staining. These features reflect differential PBs biogenesis during development and maturation processes in olive seed tissues endosperm and cotyledon, in relation to proteins (polypeptides) final composition, SSPs processing and/or packaging during seed maturation. Three different mobilization patterns of legumin-like proteins were identified for the first time in cotyledon PBs during seedling germinating process. Mature proteins composition and/or processing, cell types and enzyme composition and/or differential activation have been discussed as key features determining how proteins mobilize from PBs for further degradation in the cotyledon.
基金funded by the National Natural Science Foundation of China(32072022)the Nanfan Special Project,CAAS(YBXM07)the Hainan Yazhou Bay Seed Laboratory,China(B23CJ0208)。
文摘The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.
基金supported by the National Natural Science Foundation of China(Grant No.32101763)China National Postdoctoral Program for Innovative Talents(Grant No.BX2021266)China Postdoctoral Science Foundation(Grant No.2021M692853).
文摘As the‘Green Revolution’gene,SD1(encoding GA20ox2),has been widely applied to improve yield in rice breeding.However,research on its transcriptional regulation is limited.Here,we identified a transcription factor OsbZIP01,which can suppress the expression of SD1 and regulate gibberellin(GA)biosynthesis in rice.Knockout mutants of OsbZIP01 exhibited increased plant height,while the overexpression lines showed a semi-dwarf phenotype and diminished germination rate.Furthermore,the semi-dwarf phenotype of OE-bZIP01,was caused by the reduced internode length,which was accompanied by a thin stem width.The predominant expression of OsbZIP01 was observed in leaves and sheaths.OsbZIP01 protein was localized in the nucleus and showed transcriptional repression activity.In addition,OsbZIP01 could directly bind to the promoter of the OsSD1 gene,and inhibit its transcription.The semi-dwarf phenotype of OE-bZIP01 could be rescued by exogenous GA_(3).Meanwhile,the bzip01 sd1 double mutant showed a shorter shoot length compared with the wild type,indicating that OsbZIP01 regulated plant growth mainly through the GA biosynthesis pathway.Collectively,OsbZIP01 negatively regulates GA biosynthesis by restraining SD1 transcription,thereby affecting plant growth and development.
基金funded by the National Natural Science Foundation of China(31301891)。
文摘The seed predator satiation hypothesis states that high seed abundance can satiate seed predators or seed dispersers,thus promoting seed survival.However,for rapidly germinating seeds in tropical forests,high seed abundance may limit dispersal as the seeds usually remain under parent trees for long periods,which may lead to high mortality due to rodent predation or fungal infestations.By tracking 2 species of rapidly germinating seeds(Pittosporopsis kerrii,family Icacinaceae;Camellia kissi,family Theaceae),which depend on dispersal by scatter-hoarding rodents,we investigated the effects of seed abundance at the community level on predation and seed dispersal in the tropical forest of Xishuangbanna Prefecture,Southwest China.We found that high seed abundance at the community level was associated with delayed and reduced seed removal,decreased dispersal distance and increased pre-dispersal seed survival for both plant species.High seed abundance was also associated with reduced seed caching of C.kissi,but it showed little effect on seed caching of P.kerrii.However,post-dispersal seed survival for the 2 plant species followed the reverse pattern.High seed abundance in the community was associated with higher post-dispersal survival of P.kerrii seeds,but with lower post-dispersal survival of C.kissi seeds.Our results suggest that different plant species derive benefit from fluctuations in seed production in different ways.
基金the National High Technology Research and Development Program of China (Grant No. 2001AA223021) National Key Technologies R&D Programme (Grant No. 2002BA711A14)
文摘Trichophyton rubrum is a dominating superficial dermatophyte, whose conidial germination is corre- lated to pathopoiesis and a highly important developmental process. To investigate the changes of physiology, biochemistry and cytology during the germination, we selected 3364 function identified ESTs from T. rubrum cDNA library to construct cDNA microarrays, and compared the gene expression levels of conidia and germinating phase. Data analysis indicated that 335 genes were up-regulated during the germination, which mainly encoded translated, modified proteins and structural proteins. The constituents of cell wall and cell membrane were synthetized abundantly, suggesting that they are the foundation of cell morphogenesis. The ingredients of the two-component signal transduction sys- tem were up-regulated, presuming that they were important for the conidial germination. Genes of various metabolic pathways were expressed prosperously, especially the genes that participated in glycolysis and oxidative phosphorylation were up-regulated on the whole, demonstrating that in the environment with sufficient oxygen and glucose, conidia obtained energy through aerobic respiration. This paper provides important clues which are helpful to understanding the changes in gene expres- sion, signal conduction and metabolism characteristics during T. rubrum conidial germination, and possess significant meaning to the study of other superficial dermatophytes.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Ministry of Science and Information and Communication Technology(MSIT),Republic of Korea(NRF2022R1A4A1030348 and 2023R1A2C1004432)the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)through the Digital Breeding Transformation Technology Development Program,funded by the Ministry of Agriculture,Food and Rural Affairs(MAFRA),Republic of Korea(322060031HD020)the Cooperative Research Program for Agriculture Science and Technology Development,Rural Development Administration,Republic of Korea(RS-2023-00222739)。
文摘Pre-harvest sprouting(PHS)poses a significant global challenge to cereal production,impacting both yield and quality.In this study,we employed genome-wide association studies(GWAS)on diverse rice accessions to identify novel PHS-associated haplotypes.An assessment of 127 cultivated accessions for panicle germination(PHS)and detached grain germination(germination rate of detached grains at the 14th day(D14))revealed considerable phenotypic variation among rice ecotypes.GWAS analysis identified 91 significant signals at–log10(P-value)>5,including 15SNPs for PHS and 76 SNPs for D14.A subsequent linkage disequilibrium(LD)block-based GWAS analysis detected 227 significant SNPs for both traits,consisting of 18 nonsynonymous substitutions located on the coding regions of nine genes.Further haplotype analysis identified 32 haplotypes,with 10 specific to cultivated accessions,19 specific to the wild type,and three shared between them.A phenotypic assessment of major haplotypes revealed significant differences between resistant(Hap1 and Hap2)and susceptible haplotypes(Hap5,Hap27,and Hap28),distinguished by a G/A SNP within a novel gene,Os04g0545200.The identified haplotypes offer promising prospects for haplotypebased breeding aimed at enhancing PHS resistance in rice.
基金supported by the Key Research and Development Program of Shaanxi(2021NY-083)the National Natural Science Foundation of China(31871567).
文摘Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.
基金supported by the Hainan Province Science and Technology Special Fund,China(ZDYF2023XDNY086)the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2022-87)+1 种基金the Natural Science Foundation of Guangdong Province,China(2023A1515012052,2023A1515012092)the Science and Technology Project of Guangzhou,China(2023A04J0749,2023A04J1452).
文摘Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.
基金The authors are very much grateful to Bangladesh Agricultural University Research System(BAURES)Bangladesh Agricultural University,Mymensingh-2202,Bangladesh for the financial support through the research project entitled“Induction of Heat and Drought Tolerance in Wheat through Seed Priming”(Project No.2021/35/BAU)to carry out the research work.
文摘Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective seed priming method that would ensure the potential yield of wheat in Bangladesh,two experiments were carried out from December 2021 to March 2022 at the Department of Agronomy,Bangladesh Agricultural University.Two wheat varieties namely BARI Gom-28 and BWMRI Gom-1 were subjected to a range of priming chemicals in both lab and pot tests.These compounds included the following:control(no priming),hydropriming(distilled water),10000 ppm KNO_(3),15000 ppm KNO_(3),40000 ppm Mannitol,60000 ppm Mannitol,10000 ppm NaCl,20000 ppm NaCl,100 ppm PEG,150 ppm PEG,500 ppm NaOCl,1000 ppm NaOCl,10000 ppm CaCl_(2),20000 ppm CaCl_(2),10000 ppm KCl and 20000 ppm KCl.A complete randomized design(CRD)with three repli-cations was used to set up the experiments.The results showed that BARI Gom-28 and BWMRI Gom-1 responded best to KCl priming in terms of rapid seed germination and strong seedling development.On the other hand,the best priming agents for plant growth and productivity turned out to be CaCl_(2) and KCL.The results of this study support the possibility of using seed priming as a technique to improve wheat plant development and output by raising seed emergence and survival rates.
基金Fundacao Coordenacao de Aperfeicoamento de Pessoal de Nível Superior (CAPES), Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG [grant number APQ-02349-21])Universidade do Estado de Minas Gerais (UEMG [Productivity Researcher of the UEMG – PQ/UEMG]) for their financial support and fellowships
文摘The use of biochar can have several effects on plant germination,depending on raw material,preparation method and application dose.However,the molecular mechanisms that lead to those results have yet to be elucidated.The aim of this research was to improve the understanding of these mechanisms by characterizing the metabolic effects of sugarcane bagasse biochar on soybean germination.Three types of biochars were prepared by pyrolysis at 300℃(SCB300),400℃(SCB400)and 600℃(SCB600).Then,each one was mixed into sand at 1%,3%,5%(w/w)dose,respectively.The experiment was performed in 8 days of incubation,when the number of germinated seeds and the average radicle length were determined.To evaluate the metabolome,the dry biomass(DB)was subjected to extraction with a mixture of methanol-d4 and D2O(1:1 v/v).The extracts were submitted to metabolomics analysis by Proton Nuclear Magnetic Resonance.The Relative Germination,Relative Average Radicle Growth and Germination Index increased in all treatments compared to control.On the other hand,the DB increased in all treatments,except for SCB300,at doses of 1%and 3%w/w.Seven metabolites(alanine,asparagine,acetic acid,citric acid,glycerol,fatty acids and sucrose)were identified and quantified in DB extracts as the most influential finding for the separation of treatments.Taken together,these results strongly suggested that biochars accelerated the catabolism of triacylglycerols to sucrose and induced a slight osmotic stress.
基金supported by The National Natural Science Foundation of China(32171957)Scientific and Technological Innovation 2030,Design and Cultivation of New High-Yielding Salt-Alkali Tolerant Soybean Varieties(2023ZD0403602)Knowledge Innovation Program of Wuhan(2023020201010127).
文摘Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for soil quality improvement,necessitates the identification of salt-tolerant varieties and germplasms to effectively utilize and enhance saline-alkali land.In this study,we assessed the salt tolerance of 435 soybean varieties and germplasms during the seedling stage.Among them,Qihuang34,You2104,Hongzhudou,Pamanheidou,and Osage exhibited grade 1 salt tolerance rates surpassing other tested materials.Furthermore,Hongzhudou and Qihuang34 demonstrated higher salt tolerance during germination and emergence stages based on their elevated rates of emergence,salt tolerance index,chlorophyll content,and shoot fresh weights.Overall findings provide valuable resources for molecular breeding efforts aimed at developing salt-tolerant soybean varieties suitable for cultivation in saline-alkali soils.
基金the Sichuan Science and Technology Program(2023NSFSC0214)China Agriculture Research System(CARS-07-B-1)+1 种基金National Natural Sciences Foundation of China(Nos.3230185031771716).
文摘To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design methodsto investigate the seed coating formula and physical properties of Tartary buckwheat. The specific effects ofeach component on Tartary buckwheat seed germination are analyzed. The findings reveal that the seed coatingagent formulated with 1.5% polyvinyl alcohol, 0.15% sodium alginate, 0.2% op-10, 0.1% polyacrylamide, 8% colorant,3% ammonium sulfate, 1% potassium dihydrogen phosphate, and 0.15% carbendazim exhibits the mosteffective coating. It demonstrates optimal physical properties and promotes seed germination efficiently. The suspensionrate of this seed coating agent reaches 91.12%, with a mere 2.13% coating shedding rate and 2.5% coatingseed rot rate. Furthermore, it achieves a germination percentage of 99.17%, which is 20.84% higher than the lowestgroup. The germination potential and index are also significantly higher than the lowest group, with anincrease of 20.84% and 26.56%, respectively. Additionally, the vitality index is 553.08, a 15.75% increase comparedto the lowest group. The application of seed coating agents helps reduce seed resource loss, increase plant numbers,and ultimately enhance agricultural yields. This finding holds practical significance in agriculturalproduction.
基金Supported by Zhejiang Basic Public Welfare Research Program Project(LGN21C020006)Key Research and Development Project of Zhejiang Province(2021C02057)+1 种基金Zhejiang Major Science and Technology Project of Agricultural New Variety(Upland Food)Breeding(2021C02064)Key Research and Development Project of Zhejiang Province(2022C04024).
文摘[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.
文摘In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.
基金Supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China (30221002).Acknowledgements The authors are grateful to Qi Xie (Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences) for help with the construction of the cDNA library and the yeast two-hybrid techniques and Tim Robbins for providing P. hybrida. The authors also thank Jiayang Li (Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences) for the pB1221-35S:GFP vector.
文摘Self-Incompatibility (SI) Is a genetic mechanism of self/non-self pollen recognition to prevent self-fertilization In many flowering plants and, In most cases, this is controlled by a multl-allellc S-locus. S-RNase and Slocus F box (SLF) proteins have been shown to be the female and male determinants of gametophytlc selfIncompatibility (GSI), respectively, In the Solanaceae, Scrophulariaceae and Rosaceae. Nevertheless, It is thought that additional factors are required for the SI response. Herein, we constructed a mature anther cDNA library from a self-Incompatible Petunia hybrida Vllm. line of the S3S3 haplotype. Using AhS2-RNase from Antirrhinum hispanicum as a bait for yeast two-hybrid screening, we found that petunia germinating pollen (PGP) S/D3 was capable of Interacting physically with the bait. However, the Interaction lacked haplotype specificity. The PGPS/D3 gene Is a single copy gene that Is expressed In tissues such as the style, ovary, pollen, and leaf. The PGPS/D3::GFP (green fluorescence protein) construct was detected In both the membrane and cytoplasm. The Implications of these findings In the operation of S-RNase-based SI are discussed.
文摘The effect of litter on forest regeneration depends on the characteristics of regional climate and also shows community specificity. The influences of plant litter on seed germination and seedling growth of Larch Siberian forest in the Altai Mountains were investigated through two simulated experiments including litter coverage and litter aqueous extracts. In the litter coverage experiment, three litter coverage methods including above (D), below (S) and in the middle (Z) of litter were set with the litter coverage thickness of 0, 1, 2, and 4 cm, while two aqueous extract obtained methods using the air-dried litter and litter ash after fir were used with the concentration of 10%, 40%, 80% and 100% in the present study. Results showed that: the aqueous extracts obtained using the air-dried litter restrained the seed germination, while the aqueous extracts obtained using litter ash improved the seed germination. Compared with other litter concentration, the influences of 100% concentration reach highest. The seed germination rate, seed germination potential and vital index under the treatment of seeds above the litter coverage were highest, which were significantly higher than other treatments. The above-ground biomass was significantly higher and the inhibition index of below-ground bio-mass was significantly lower under the treatment of seed above the litter with thin litter cover-age (S1) compared to other litter coverage treatments. These results indicated that the litter aqueous extract and the litter coverage had a combined effect on the seed germination and seedling growth of Siberian larch forest. Fire disturbance could promote seed germination by modifying the adverse effects of litter aqueous extracts and litter coverage, and thus plays an important role in the regeneration of Siberian larch in the Altai Mountains.