Fresh-seed germination(FSG)impairs peanut production,especially in areas where the peanut harvest season coincides with rainy weather.Developing FSG-resistant cultivars by molecular breeding is expected to mitigate yi...Fresh-seed germination(FSG)impairs peanut production,especially in areas where the peanut harvest season coincides with rainy weather.Developing FSG-resistant cultivars by molecular breeding is expected to mitigate yield loss and quality impairment caused by FSG.However,the genetic control of FSG awaits elucidation.In this study,FSG at 1,3,5,7,and 9 days post-imbibition in three environments were tested,and quantitative-trait loci(QTL)associated with FSG were mapped in a peanut recombinant inbred line population by leveraging existing high-density peanut genetic maps.Of 24 QTL identified in 13 linkage groups,qFSGA04 was a stable major QTL on linkage group 04(LG04).It was consistently detected in five germination stages and three environments.By designing and validating DNA markers in the confidence interval of qFSGA04,we identified one single-nucleotide polymorphism and one In Del closely associated with FSG that could be used as linked markers for FSG resistance in peanut breeding.展开更多
基金supported by China Agriculture Research System(CARS-13)Henan Provincial Agriculture Research System,China(S2012-5)+1 种基金Major Science and Technology Projects of Henan Province(201300111000)the Henan Provincial R&D Projects of Interregional Cooperation for Local Scientific and Technological Development Guided by Central Government(YDZX20214100004191)。
文摘Fresh-seed germination(FSG)impairs peanut production,especially in areas where the peanut harvest season coincides with rainy weather.Developing FSG-resistant cultivars by molecular breeding is expected to mitigate yield loss and quality impairment caused by FSG.However,the genetic control of FSG awaits elucidation.In this study,FSG at 1,3,5,7,and 9 days post-imbibition in three environments were tested,and quantitative-trait loci(QTL)associated with FSG were mapped in a peanut recombinant inbred line population by leveraging existing high-density peanut genetic maps.Of 24 QTL identified in 13 linkage groups,qFSGA04 was a stable major QTL on linkage group 04(LG04).It was consistently detected in five germination stages and three environments.By designing and validating DNA markers in the confidence interval of qFSGA04,we identified one single-nucleotide polymorphism and one In Del closely associated with FSG that could be used as linked markers for FSG resistance in peanut breeding.