To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which inte...To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.展开更多
A novel neural network model, termed the discrete-time delayed standard neural network model (DDSNNM), and similar to the nominal model in linear robust control theory, is suggested to facilitate the stability analy...A novel neural network model, termed the discrete-time delayed standard neural network model (DDSNNM), and similar to the nominal model in linear robust control theory, is suggested to facilitate the stability analysis of discrete-time recurrent neural networks (RNNs) and to ease the synthesis of controllers for discrete-time nonlinear systems. The model is composed of a discrete-time linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. By combining various Lyapunov functionals with the S-procedure, sufficient conditions for the global asymptotic stability and global exponential stability of the DDSNNM are derived, which are formulated as linear or nonlinear matrix inequalities. Most discrete-time delayed or non-delayed RNNs, or discrete-time neural-network-based nonlinear control systems can be transformed into the DDSNNMs for stability analysis and controller synthesis in a unified way. Two application examples are given where the DDSNNMs are employed to analyze the stability of the discrete-time cellular neural networks (CNNs) and to synthesize the neuro-controllers for the discrete-time nonlinear systems, respectively. Through these examples, it is demonstrated that the DDSNNM not only makes the stability analysis of the RNNs much easier, but also provides a new approach to the synthesis of the controllers for the nonlinear systems.展开更多
基金Project (No. 60074008) supported by the National Natural Science Foundation of China
文摘To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 60504024) the Research Project of Zhejiang Provincial Education Department (Grant No. 20050905).
文摘A novel neural network model, termed the discrete-time delayed standard neural network model (DDSNNM), and similar to the nominal model in linear robust control theory, is suggested to facilitate the stability analysis of discrete-time recurrent neural networks (RNNs) and to ease the synthesis of controllers for discrete-time nonlinear systems. The model is composed of a discrete-time linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. By combining various Lyapunov functionals with the S-procedure, sufficient conditions for the global asymptotic stability and global exponential stability of the DDSNNM are derived, which are formulated as linear or nonlinear matrix inequalities. Most discrete-time delayed or non-delayed RNNs, or discrete-time neural-network-based nonlinear control systems can be transformed into the DDSNNMs for stability analysis and controller synthesis in a unified way. Two application examples are given where the DDSNNMs are employed to analyze the stability of the discrete-time cellular neural networks (CNNs) and to synthesize the neuro-controllers for the discrete-time nonlinear systems, respectively. Through these examples, it is demonstrated that the DDSNNM not only makes the stability analysis of the RNNs much easier, but also provides a new approach to the synthesis of the controllers for the nonlinear systems.