Gate-grounded N-channel MOSFET(GGNMOS)has been extensively used for on-chip electrostatic discharge(ESD)protection.However,the ESD performance of the conventional GGNMOS is significantly degraded by the current crowdi...Gate-grounded N-channel MOSFET(GGNMOS)has been extensively used for on-chip electrostatic discharge(ESD)protection.However,the ESD performance of the conventional GGNMOS is significantly degraded by the current crowding effect.In this paper,an enhanced GGNMOS with P-base layer(PB-NMOS)are proposed to improve the ESD robustness in BCD process without the increase in layout area or additional layer.TCAD simulations are carried out to explain the underlying mechanisms of that utilizing the P-base layer can effectively restrain the current crowing effect in proposed devices.All devices are fabricated in a 0.5-μm BCD process and measured using the transmission line pulsing(TLP)tester.Compared with the conventional GGNMOS,the proposed PB-NMOS devices offer a higher failure current than its conventional counterpart,which can be increased by 15.38%.Furthermore,the PB-NMOS type 3 possesses a considerably lower trigger voltage than the conventional GGNMOS to protect core circuit effectively.展开更多
In this paper,the ESD discharge capability of GGNMOS(gate grounded NMOS)device in the radiation-hardened 0.18μm bulk silicon CMOS process(Rad-Hard by Process:RHBP)is optimized by layout and ion implantation design.Th...In this paper,the ESD discharge capability of GGNMOS(gate grounded NMOS)device in the radiation-hardened 0.18μm bulk silicon CMOS process(Rad-Hard by Process:RHBP)is optimized by layout and ion implantation design.The effects of gate length,DCGS and ESD ion implantation of GGNMOS on discharge current density and lattice temperature are studied by TCAD and device simulation.The size of DCGS,multi finger number and single finger width of ESD verification structures are designed,and the discharge capacity and efficiency of GGNMOS devices in ESD are characterized by TLP test technology.Finally,the optimized GGNMOS is verified on the DSP circuit,and its ESD performance is over 3500 V in HBM mode.展开更多
A fully integrated low noise amplifier( LNA) for WLAN 802. 11 ac is presented in this article.A cascode topology combining BJT and MOS transistor is used for better performance. An inductive source degeneration is cho...A fully integrated low noise amplifier( LNA) for WLAN 802. 11 ac is presented in this article.A cascode topology combining BJT and MOS transistor is used for better performance. An inductive source degeneration is chosen to get 50 Ohm impedance matching at the input. The noise contribution of common gate transistor is analyzed for the first time. The designed LNA is verified with IBM silicon-germanium(SiGe ) 0. 13μm BiCMOS process. The measured results show that the designed LNA has the gain of 13 dB and NF of 2. 8 dB at the center frequency of 5. 5 GHz. The input reflection S11 and output reflection S22 are equal to-19 dB and-11 dB respectively. The P-1 dB and IIP3 are-8. 9 dBm and 6. 6 dBm for the linearity performance respectively. The power consumption is only 1. 3 mW under the 1. 2 V supply. LNA achieves high gain,low noise,and high linearity performance,allowing it to be used for the WLAN 802. 11 ac applications.展开更多
文摘Gate-grounded N-channel MOSFET(GGNMOS)has been extensively used for on-chip electrostatic discharge(ESD)protection.However,the ESD performance of the conventional GGNMOS is significantly degraded by the current crowding effect.In this paper,an enhanced GGNMOS with P-base layer(PB-NMOS)are proposed to improve the ESD robustness in BCD process without the increase in layout area or additional layer.TCAD simulations are carried out to explain the underlying mechanisms of that utilizing the P-base layer can effectively restrain the current crowing effect in proposed devices.All devices are fabricated in a 0.5-μm BCD process and measured using the transmission line pulsing(TLP)tester.Compared with the conventional GGNMOS,the proposed PB-NMOS devices offer a higher failure current than its conventional counterpart,which can be increased by 15.38%.Furthermore,the PB-NMOS type 3 possesses a considerably lower trigger voltage than the conventional GGNMOS to protect core circuit effectively.
基金This work was supported by the Military Quality Engineering of China(No.1807WR0002).
文摘In this paper,the ESD discharge capability of GGNMOS(gate grounded NMOS)device in the radiation-hardened 0.18μm bulk silicon CMOS process(Rad-Hard by Process:RHBP)is optimized by layout and ion implantation design.The effects of gate length,DCGS and ESD ion implantation of GGNMOS on discharge current density and lattice temperature are studied by TCAD and device simulation.The size of DCGS,multi finger number and single finger width of ESD verification structures are designed,and the discharge capacity and efficiency of GGNMOS devices in ESD are characterized by TLP test technology.Finally,the optimized GGNMOS is verified on the DSP circuit,and its ESD performance is over 3500 V in HBM mode.
基金Supported by the National Natural Science Foundation of China(No.61534003)
文摘A fully integrated low noise amplifier( LNA) for WLAN 802. 11 ac is presented in this article.A cascode topology combining BJT and MOS transistor is used for better performance. An inductive source degeneration is chosen to get 50 Ohm impedance matching at the input. The noise contribution of common gate transistor is analyzed for the first time. The designed LNA is verified with IBM silicon-germanium(SiGe ) 0. 13μm BiCMOS process. The measured results show that the designed LNA has the gain of 13 dB and NF of 2. 8 dB at the center frequency of 5. 5 GHz. The input reflection S11 and output reflection S22 are equal to-19 dB and-11 dB respectively. The P-1 dB and IIP3 are-8. 9 dBm and 6. 6 dBm for the linearity performance respectively. The power consumption is only 1. 3 mW under the 1. 2 V supply. LNA achieves high gain,low noise,and high linearity performance,allowing it to be used for the WLAN 802. 11 ac applications.