It is important to track and reconstruct the complex immersed boundaries for simulating fluid structure interaction problems in an immersed boundary method(IBM). In this paper, a polynomial radial basis function(P...It is important to track and reconstruct the complex immersed boundaries for simulating fluid structure interaction problems in an immersed boundary method(IBM). In this paper, a polynomial radial basis function(PRBF) method is introduced to the ghost cell immersed boundary method for tracking and reconstructing the complex moving boundaries. The body surfaces are fitted with a finite set of sampling points by the PRBF, which is flexible and accurate. The complex or multiple boundaries could be easily represented. A simple treatment is used for identifying the position information about the interfaces on the background grid. Our solver and interface reconstruction method are validated by the case of a cylinder oscillating in the fluid. The accuracy of the present PRBF method is comparable to the analytic function method. In ta flow around an airfoil, the capacity of the proposed method for complex geometries is well demonstrated.展开更多
In this paper,an immersed boundary algorithm is developed by combining the ghost cell method with adaptive tree Cartesian grid method.Furthermore,the proposed method is successfully used to evaluate various inviscid c...In this paper,an immersed boundary algorithm is developed by combining the ghost cell method with adaptive tree Cartesian grid method.Furthermore,the proposed method is successfully used to evaluate various inviscid compressible flow with immersed boundary.The extension to three dimensional cases is also achieved.Numerical examples demonstrate the proposed method is effective.展开更多
基金Project supported by the National Science Foundation of China under(Grant Nos.51579196,51139005 and 51490670)the 111 Project(Grant No.B08031)
文摘It is important to track and reconstruct the complex immersed boundaries for simulating fluid structure interaction problems in an immersed boundary method(IBM). In this paper, a polynomial radial basis function(PRBF) method is introduced to the ghost cell immersed boundary method for tracking and reconstructing the complex moving boundaries. The body surfaces are fitted with a finite set of sampling points by the PRBF, which is flexible and accurate. The complex or multiple boundaries could be easily represented. A simple treatment is used for identifying the position information about the interfaces on the background grid. Our solver and interface reconstruction method are validated by the case of a cylinder oscillating in the fluid. The accuracy of the present PRBF method is comparable to the analytic function method. In ta flow around an airfoil, the capacity of the proposed method for complex geometries is well demonstrated.
基金supported partly by National Science Foundation of China(10728026)National Basic Research Program of China(2007CB714600).
文摘In this paper,an immersed boundary algorithm is developed by combining the ghost cell method with adaptive tree Cartesian grid method.Furthermore,the proposed method is successfully used to evaluate various inviscid compressible flow with immersed boundary.The extension to three dimensional cases is also achieved.Numerical examples demonstrate the proposed method is effective.