期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of Panax ginseng UDP- Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rhl in Metabolically Engineered Yeasts 被引量:44
1
作者 Wei Wei Pingping Wang +6 位作者 Yongjun Wei Qunfang Liu Chengshuai Yang Guoping Zhao Jianmin Yue Xing Yan Zhihua Zhou 《Molecular Plant》 SCIE CAS CSCD 2015年第9期1412-1424,共13页
Ginsenosides, the main pharmacologically active natural compounds in ginseng (Panax ginseng), are mostly the glycosylated products of protopanaxadiol (PPD) and protopanaxatriol (PPT). No uridine diphosphate glyc... Ginsenosides, the main pharmacologically active natural compounds in ginseng (Panax ginseng), are mostly the glycosylated products of protopanaxadiol (PPD) and protopanaxatriol (PPT). No uridine diphosphate glycosyltransferase (UGT), which catalyzes PPT to produce PPT-type ginsenosides, has yet been reported. Here, we show that UGTPgl, which has been demonstrated to regio-specifically glycosylate the C20-OH of PPD, also specifically glycosylates the C20-OH of PPT to produce bioactive ginsenoside FI. We report the characterization of four novel UGT genes isolated from P. ginseng, sharing high deduced amino acid identity (〉84%) with UGTPgl. We demonstrate that UGTPgl00 specifically glycosylates the C6-OH of PPT to produce bioactive ginsenoside Rhl, and UGTPgl01 catalyzes PPT to produce F1, followed by the generation of ginsenoside Rgl from FI. However, UGTPgl02 and UGTPgl03 were found to have no detectable activity on PPT. Through structural modeling and site-directed mutagenesis, we identified several key amino acids of these UGTs that may play important roles in determining their activities and substrate regio-specificities. Moreover, we constructed yeast recombinants to biosynthesize F1 and Rhl by introducing the genetically engineered PPT-producing pathway and UGTPgl or UGTPgl00. Our study reveals the possible biosynthetic pathways of PPT-type ginsenosides in Panax plants, and provides a sound manufacturing approach for bioactive PPT-type ginsenosides in yeast via synthetic biology strategies. 展开更多
关键词 UDP-glycosyltransferase TRITERPENOIDS protopanaxatriol ginsenoside f1 ginsenoside Rhl Panax ginseng
原文传递
Ginsenoside F1 administration promotes UCP1-dependent fat browning and ameliorates obesity-associated insulin resistance
2
作者 Yuhan Meng Weili Li +7 位作者 Chenxing Hu Si Chen Haiyang Li Feifei Bai Lujuan Zheng Ye Yuan Yuying Fan Yifa Zhou 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期2061-2072,共12页
Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is... Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance. 展开更多
关键词 Ginsenoside f1 Uncoupling protein 1 β3-Adrenergic receptor White adipose tissue browning Insulin resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部