Poor bleaching is a significant problem for Optically Stimulated Luminescence(OSL) dating of glacial sediments. Five young glacial samples(including two modern analogues) from different depositional settings were coll...Poor bleaching is a significant problem for Optically Stimulated Luminescence(OSL) dating of glacial sediments. Five young glacial samples(including two modern analogues) from different depositional settings were collected beyond the Yingpu Glacier in the eastern Qinghai-Tibetan Plateau. De was determined using different OSL methods. The luminescence characteristics and dating results showed that the large aliquot quartz Blue Stimulated Luminescence(BSL) is more applicable than polymineral infrared stimulated luminescence(IRSL) method. Small aliquot quartz BSL results showed poor luminescence properties due to low luminescence sensitivity of quartz in this area. The dating results also indicated that glaciofluvial samples deposited close to ice margin(~40 m and ~700 m) and supraglacial debris dominated lateral moraine samples are relatively well-bleached, whereas samples from ground moraine and low terminal moraine were poorly bleached, probably due to containing subglacial and englacial debris. The residual doses of glaciofluvial and lateral moraine crest samples were below a few Gy and age overestimations were below a few hundred years. The ground moraine and low terminal moraine samples had residual doses as high as ~110 Gy, and ages were overestimated by ~15-17 ka.展开更多
Objective Climate fluctuations over suborbital or millennial timescale display significant instability during the last glacial period,which are often superimposed upon the orbital periodicity.They triggered some abrup...Objective Climate fluctuations over suborbital or millennial timescale display significant instability during the last glacial period,which are often superimposed upon the orbital periodicity.They triggered some abrupt climate events,展开更多
Within McHenry County, IL, the fastest growing county in Illinois, groundwater is used for 100% of the water needs. Concerns over water resources have prompted the investigation of the surficial sand and gravel aquife...Within McHenry County, IL, the fastest growing county in Illinois, groundwater is used for 100% of the water needs. Concerns over water resources have prompted the investigation of the surficial sand and gravel aquifers of the county. While the eastern portion of the county is urbanizing, the western portion remains devoted to agriculture. High-capacity irrigation wells screened within the surficial sand and gravel aquifer are used for crop production. To assess the impacts of the irrigation wells on the aquifer, a groundwater flow model was developed to examine five different scenarios reflecting drought conditions and increased pumping. Results show that the surficial sand and gravel aquifer is capable of meeting current water demands even if recharge is decreased 20% and pumping is increased 20%. The additional loss of discharge and increases in pumping result in head differences throughout the aquifer.展开更多
As temperatures rise and climate change becomes an increasingly important issue, geologic carbon dioxide (CO<sub>2</sub>) sequestration is a viable solution for reducing greenhouse gas emissions. Subsurfac...As temperatures rise and climate change becomes an increasingly important issue, geologic carbon dioxide (CO<sub>2</sub>) sequestration is a viable solution for reducing greenhouse gas emissions. Subsurface 3-D modeling and groundwater flow modeling were completed as a component of a CO<sub>2</sub> sequestration feasibility study in the city of Decatur, Illinois. The Decatur Archer Daniels Midland Company Ethanol Plant (ADM) serves as the injection site for a CO<sub>2</sub> sequestration project within a deep saline reservoir. Petrel was successfully used to model the glacial deposits in the area. The 3-D geologic model shows the Peoria Silt, Wedron Formation, and Cahokia Formation at the surface with the Wedron Formation holding up the steep slopes along the east and west banks of Lake Decatur. The groundwater flow model outlined the location of a local groundwater divide and showed flow from the injection site would flow towards Lake Decatur, reaching the lake in 80 days.展开更多
基金financially supported by the National Natural Sciences Foundation of China (Grant No. 41371080, 41290252, and 41271077)"Strategic Priority Research Program (B)" of CAS (Grant No. XDB03030200)Training Plan for Outstanding Young Teachers in Higher Education Institutions of Guangdong (20140102)
文摘Poor bleaching is a significant problem for Optically Stimulated Luminescence(OSL) dating of glacial sediments. Five young glacial samples(including two modern analogues) from different depositional settings were collected beyond the Yingpu Glacier in the eastern Qinghai-Tibetan Plateau. De was determined using different OSL methods. The luminescence characteristics and dating results showed that the large aliquot quartz Blue Stimulated Luminescence(BSL) is more applicable than polymineral infrared stimulated luminescence(IRSL) method. Small aliquot quartz BSL results showed poor luminescence properties due to low luminescence sensitivity of quartz in this area. The dating results also indicated that glaciofluvial samples deposited close to ice margin(~40 m and ~700 m) and supraglacial debris dominated lateral moraine samples are relatively well-bleached, whereas samples from ground moraine and low terminal moraine were poorly bleached, probably due to containing subglacial and englacial debris. The residual doses of glaciofluvial and lateral moraine crest samples were below a few Gy and age overestimations were below a few hundred years. The ground moraine and low terminal moraine samples had residual doses as high as ~110 Gy, and ages were overestimated by ~15-17 ka.
基金co-supported by the National Natural Science Foundation of China(Grants Nos:41572162.41290253)International Partnership Program of the Chinese Academy of Sciences(No:132B61KYS20160002)
文摘Objective Climate fluctuations over suborbital or millennial timescale display significant instability during the last glacial period,which are often superimposed upon the orbital periodicity.They triggered some abrupt climate events,
文摘Within McHenry County, IL, the fastest growing county in Illinois, groundwater is used for 100% of the water needs. Concerns over water resources have prompted the investigation of the surficial sand and gravel aquifers of the county. While the eastern portion of the county is urbanizing, the western portion remains devoted to agriculture. High-capacity irrigation wells screened within the surficial sand and gravel aquifer are used for crop production. To assess the impacts of the irrigation wells on the aquifer, a groundwater flow model was developed to examine five different scenarios reflecting drought conditions and increased pumping. Results show that the surficial sand and gravel aquifer is capable of meeting current water demands even if recharge is decreased 20% and pumping is increased 20%. The additional loss of discharge and increases in pumping result in head differences throughout the aquifer.
文摘As temperatures rise and climate change becomes an increasingly important issue, geologic carbon dioxide (CO<sub>2</sub>) sequestration is a viable solution for reducing greenhouse gas emissions. Subsurface 3-D modeling and groundwater flow modeling were completed as a component of a CO<sub>2</sub> sequestration feasibility study in the city of Decatur, Illinois. The Decatur Archer Daniels Midland Company Ethanol Plant (ADM) serves as the injection site for a CO<sub>2</sub> sequestration project within a deep saline reservoir. Petrel was successfully used to model the glacial deposits in the area. The 3-D geologic model shows the Peoria Silt, Wedron Formation, and Cahokia Formation at the surface with the Wedron Formation holding up the steep slopes along the east and west banks of Lake Decatur. The groundwater flow model outlined the location of a local groundwater divide and showed flow from the injection site would flow towards Lake Decatur, reaching the lake in 80 days.