期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Assessment of precipitation type discrimination methods on glacier of Qilian Mountains
1
作者 CHEN Ji-zu DU Wen-tao +4 位作者 KANG Shi-chang QIN Xiang SUN Wei-jun JIANG You-yan SUN Wen-xuan 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3476-3487,共12页
Solid precipitation is not only the main supply for glacier mass,but also exerts an important influence on surface albedo and intensifies glacier melting.However,precipitation type observation is very scarce in the hi... Solid precipitation is not only the main supply for glacier mass,but also exerts an important influence on surface albedo and intensifies glacier melting.However,precipitation type observation is very scarce in the high alpine glaciers,which limits the precise simulation of glacier mass balance.This study assessed three discrimination methods of precipitation types including Ding method,Dai method and Froidurot method based on surface albedo observation data on the Laohugou Glacier No.12(LHG Glacier)in western Qilian Mountains.The results showed that Ding method had a best applicability on the LHG Glacier,the other two need to calibrate parameters when they are used in the high elevation glacier region.Then we fitted the relationship between snowfall probability and fresh snow albedo,and put forward a revised formula to simulate fresh snow albedo based on Ding method,which is expected to reduce the uncertainty in glacier mass and energy balance model.Finally,we found a best air temperature threshold of 4℃for discriminating monthly precipitation types.In order to accurately simulate the glacier melt,it is necessary to obtain the threshold temperature appropriately in different glacier region with different elevation and humidity. 展开更多
关键词 Precipitation type Surface albedo Laohugou Glaicer No.12 glacier melting
下载PDF
Vulnerability of an inland river basin water resource system under the background of future accelerated glacier melt: A case of Yarkent River Basin in arid Northwest China 被引量:1
2
作者 HuLin Pan 《Research in Cold and Arid Regions》 2012年第5期394-400,共7页
Water resources of inland river basins of arid Northwest China will be profoundly affected by future accelerated glacier melt. Based on scenarios of climate warming, accelerated glacier melt and socioeconomic developm... Water resources of inland river basins of arid Northwest China will be profoundly affected by future accelerated glacier melt. Based on scenarios of climate warming, accelerated glacier melt and socioeconomic development in the future, vulnerability of the Yarkent River Basin water resources for 2010-2030 is evaluated quantitatively using the indicator of water deficiency ratio. Results show that the quantity of the basin's water resources will continuously increase over the next 20 years, mainly due to the effect of climate warming and accelerated glacier melt. But, in the next 10 years, the basin will have a deficient water status, and the water resource system will be quite vulnerable. This is due to an increased water demand from rapidly increasing socioeco- nomic development and a lack of low water-use efficiency in the near future. After about 2020, water supply will outstrip demand, greatly relieving the basin's water deficient due to increased water resources and the advancement of water-saving technology. Contrast to the hypothetical situation of unchanged glacier melt, climate wanning and resulting accelerated glacier melt may play a role in relieving the supply-demand strain to some extent. 展开更多
关键词 climate warming accelerated glacier melt human activity vulnerability of water resources Yarkent River Basin Northwest China
下载PDF
Mutual feedback between algal blooming and global warming
3
作者 Jianrong MA Guijun YANG +6 位作者 Xianfu ZHAO Boqiang QIN Kun SHAN Botian ZHOU Yan ZENG Jingfu WANG Jingan CHEN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期787-801,共15页
Global warming and algal blooms have been two of the most pressing problems faced by the world today.In recent decades,numerous studies indicated that global warming promoted the expansion of algal blooms.However,rese... Global warming and algal blooms have been two of the most pressing problems faced by the world today.In recent decades,numerous studies indicated that global warming promoted the expansion of algal blooms.However,research on how algal blooms respond to global warming is scant.Global warming coupled with eutrophication promoted the rapid growth of phytoplankton,which resulted in an expansion of algal blooms.Algal blooms are affected by the combined effects of global warming,including increases in temperatures,CO_(2)concentration,and nutrient input to aquatic systems by extreme weather events.Since the growth of phytoplankton requires CO_(2),they appear to act as a carbon sink.Unfortunately,algal blooms will release CH4,CO_(2),and inorganic nitrogen when they die and decompose.As substrate nitrogen increases from decompose algal biomass,more N2O will be released by nitrification and denitrification.In comparison to CO_(2),CH4has 28-fold and N2O has 265-fold greenhouse effect.Moreover,algal blooms in the polar regions may contribute to melting glaciers and sea ice(will release greenhouse gas,which contribute to global warming)by reducing surface albedo,which consequently would accelerate global warming.Thus,algal blooms and global warming could form feedback loops which prevent human survival and development.Future researches shall examine the mechanism,trend,strength,and control strategies involved in this mutual feedback.Additionally,it will promote global projects of environmental protection combining governance greenhouse gas emissions and algal blooms,to form a geoengineering for regulating the cycles of carbon,nitrogen,and phosphorus. 展开更多
关键词 climate change carbon neutrality EUTROPHICATION greenhouse gas glaciers melting GEOENGINEERING
下载PDF
Baseflow Characteristics in Alpine Rivers-a Multicatchment Analysis in Northwest China 被引量:3
4
作者 GAN Rong SUN Lin LUO Yi 《Journal of Mountain Science》 SCIE CSCD 2015年第3期614-625,共12页
As a component of streamflow, baseflow is critical for regulating seasonal distribution of river fows and stabilizing water supplies. Water resources in the arid area of Northwest China are mainly from multiple catchm... As a component of streamflow, baseflow is critical for regulating seasonal distribution of river fows and stabilizing water supplies. Water resources in the arid area of Northwest China are mainly from multiple catchments in the alpine that could be influenced by varieties of climatic, land cover, soil and geological factors. While numerous studies have been done on streamflow, systematic analysis of baseflow in the alpine river systems is scare. Based on historical daily streamflow data and the automated digital filter method of baseflow separation, this study investigated characteristics of hydrographs of overland flow, streamflow and baseflowof river systems fed by rainfall, snowmelt, glacier melt or mixtures of these. This study also calculated the recession constants and baseflow indices of 65 river systems. While the recession constant was o.oo34- o.o728 with a mean of o.o18, the baseflow index was 0.27-0.79 with a mean of 0.57. Further, Spearman's correlation analysis showed that the baseflow index was significantly correlated with catchment climatic factors (e.g., precipitation and temperature), topographic factors (e.g., elevation and slope) and aquifer properties represented by the recession constant. Multiple regression analysis indicated that the factors explained 65% of the variability of baseflow index in the studv area. 展开更多
关键词 Baseflow index Recession constant SNOWMELT glacier melt Streamflow
下载PDF
Hydrological processes of glacier and snow melting and runoff in the Urumqi River source region, eastern Tianshan Mountains, China 被引量:6
5
作者 SUN Meiping YAO Xiaojun +1 位作者 LI Zhongqin ZHANG Mingjun 《Journal of Geographical Sciences》 SCIE CSCD 2015年第2期149-164,共16页
Hydrological processes were compared, with and without the influence of precipita- tion on discharge, to identify the differences between glacierized and non-glacierized catchments in the Urumqi River source region, o... Hydrological processes were compared, with and without the influence of precipita- tion on discharge, to identify the differences between glacierized and non-glacierized catchments in the Urumqi River source region, on the northern slope of the eastern Tianshan Mountains, during the melting season (May-September) in 2011. The study was based on hydrological data observed at 10-min intervals, meteorological data observed at 15-min intervals, and glacier melting and snow observations from the Empty Cirque, Zongkong, and Urumqi Glacier No.1 gauging stations. The results indicated that the discharge differed markedly among the three gauging stations. The daily discharge was more than the nightly discharge at the Glacier No.1 gauging station, which contrasted with the patterns observed at the Zongkong and Empty Cirque gauging stations. There was a clear daily variation in the discharge at the three gauging stations, with differences in the magnitude and duration of the peak discharge. When precipitation was not considered, the time-lags between the maximum discharge and the highest temperature were 1-3 h, 10-16 h, and 5-11 h at the Glacier No.l, Empty Cirque, and Zongkong gauging stations, respectively. When precipitation was taken into consideration, the corresponding time-lags were 0-1 h, 13 h, and 6-7 h, respectively. Therefore, the duration from the generation of discharge to confluence was the shortest in the glacierized catchment and the longest in the catchment where was mainly covered by snow. It was also shown that the hydrological process from the generation of discharge to confluence shortened when precipitation was considered. The factors influencing changes in the discharge among the three gauging stations were different. For Glacier No.1 station, the discharge was mainly controlled by heat conditions in the glacierized region, and the discharge displayed an accelerated growth when the temperature exceeded 5℃ in the melt season. It was found that the englacial and subglacial drainage channel of Glacier No.1 had become simpler during the past 20 years. Its weaker retardance and storage of glacier melting water resulted in rapid discharge confluence. It was also shown that the discharge curve and the time-lag between the maximum discharge and the highest temperature could be used to reveal the evolution of the drainage system and the process of glacier and snow melting at different levels of glacier coverage. 展开更多
关键词 glacier and snow melting runoff generation and confluence hydrological process Urumqi Riversource region Tianshan Mountains
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部