Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper ...Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advance- ments in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and micro- structure molding process, as well as ultrasonic vibration- assisted molding technology.展开更多
In the glass molding process,the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature.To improve the chemical inertne...In the glass molding process,the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature.To improve the chemical inertness and anti-friction properties of the mold,an amorphous carbon coating was synthesized on the tungsten carbide-cobalt(WC–8Co)substrate by magnetron sputtering.The friction behavior between the glass and carbon coating has a significant influence on the functional protection and service life of the mold.Therefore,the glass ring compression tests were conducted to measure the friction coefficient and friction force of the contact interface between the glass and amorphous carbon coating at the high temperature.Meanwhile,the detailed characterization of the amorphous carbon coating was performed to study the microstructure evolution and surface topography of the amorphous carbon coating during glass molding process by scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Ramon spectroscopy,and atomic force microscope(AFM).The results showed that the amorphous carbon coating exhibited excellent thermal stability,but weak shear friction strength.The friction coefficient between the glass and coating depended on the temperature.Besides,the service life of the coating was governed by the friction force of the contact interface,processing conditions,and composition diffusion.This work provides a better understanding of the application of carbon coatings in the glass molding.展开更多
基金Acknowledgements This work was supported by the National Basic Research Program of China (Grant No. 2015CB059900) and the National Natural Science Foundation of China (Grant No. 51375050).
文摘Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advance- ments in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and micro- structure molding process, as well as ultrasonic vibration- assisted molding technology.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of Guangdong Province(2018A030313466)the assistance on the observation received from the Electron Microscope Center of the Shenzhen University.
文摘In the glass molding process,the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature.To improve the chemical inertness and anti-friction properties of the mold,an amorphous carbon coating was synthesized on the tungsten carbide-cobalt(WC–8Co)substrate by magnetron sputtering.The friction behavior between the glass and carbon coating has a significant influence on the functional protection and service life of the mold.Therefore,the glass ring compression tests were conducted to measure the friction coefficient and friction force of the contact interface between the glass and amorphous carbon coating at the high temperature.Meanwhile,the detailed characterization of the amorphous carbon coating was performed to study the microstructure evolution and surface topography of the amorphous carbon coating during glass molding process by scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Ramon spectroscopy,and atomic force microscope(AFM).The results showed that the amorphous carbon coating exhibited excellent thermal stability,but weak shear friction strength.The friction coefficient between the glass and coating depended on the temperature.Besides,the service life of the coating was governed by the friction force of the contact interface,processing conditions,and composition diffusion.This work provides a better understanding of the application of carbon coatings in the glass molding.