The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained t...The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified.展开更多
a gliding arc driven by the transverse magnetic field was ignited between the electrodes with a complicated shape at atmospheric pressure and a non-equilibrium plasma was gencrated. Under our experimental conditions, ...a gliding arc driven by the transverse magnetic field was ignited between the electrodes with a complicated shape at atmospheric pressure and a non-equilibrium plasma was gencrated. Under our experimental conditions, a phenomenon was clearly observed where the arc power decreased with the increase in arc voltage. As the arc voltage was higher than 3.375 kV, the are power acquired from the power supply decreased, and the arc plasma began to switch to a non-equilibrium phase. The existence of the non-equilibrium arc plasma was very short, about 10 ms in one gliding arc discharge cycle.展开更多
文摘The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified.
文摘a gliding arc driven by the transverse magnetic field was ignited between the electrodes with a complicated shape at atmospheric pressure and a non-equilibrium plasma was gencrated. Under our experimental conditions, a phenomenon was clearly observed where the arc power decreased with the increase in arc voltage. As the arc voltage was higher than 3.375 kV, the are power acquired from the power supply decreased, and the arc plasma began to switch to a non-equilibrium phase. The existence of the non-equilibrium arc plasma was very short, about 10 ms in one gliding arc discharge cycle.