We study the qualitative property of solutions of planar periodic competing otka-Volterra systems New criteria of uniform persistence of solutins and existence, uniqueness and globally asymptotical stability of positi...We study the qualitative property of solutions of planar periodic competing otka-Volterra systems New criteria of uniform persistence of solutins and existence, uniqueness and globally asymptotical stability of positive periodic solution are established. The results results in [1 -6] are summarized and improved in this paper.展开更多
This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" cond...This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.展开更多
文摘We study the qualitative property of solutions of planar periodic competing otka-Volterra systems New criteria of uniform persistence of solutins and existence, uniqueness and globally asymptotical stability of positive periodic solution are established. The results results in [1 -6] are summarized and improved in this paper.
基金supported by National Natural Science Foundation of China (Grant No. 11471334)Program for New Century Excellent Talents in University (Grant No. NCET-12-0085)
文摘This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.