Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies ...Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies the complex proofs of the two famous estimations presented by the Russian scholar Leonov. Our uniform formula can derive a series of the new estimations. Employing the idea of intersection in set theory, we extract a new Leonov formula-like estimation from the family of the estimations. With our method and the new estimation, one can confirm that there are no equilibrium, periodic solutions, almost periodic motions, wandering motions or other chaotic attractors outside the global attractive set. The Lorenz butterfly-like singular attractors are located in the global attractive set only. This result is applied to the chaos control and chaos synchronization. Some feedback control laws are obtained to guarantee that all the trajectories of the Lorenz systems track a periodic solution, or globally stabilize an unstable (or locally stable but not globally asymptotically stable) equilibrium. Further, some new global exponential chaos synchronization results are presented. Our new method and the new results are expected to be applied in real secure communication systems.展开更多
In this paper, we establish a mathematical model of two species with stage structure and the relation of predator-prey, to obtain conditions that determine the stability of the populations. By the application of compa...In this paper, we establish a mathematical model of two species with stage structure and the relation of predator-prey, to obtain conditions that determine the stability of the populations. By the application of comparing argument and exploiting the monotonicity of one equation of the model, we obtain sufficient conditions for the global attractiveness of positive equilibrium .展开更多
By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters ...By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.展开更多
In this paper,we are concerned with a class of impulsive neutral stochastic functional different equations driven by tempered fractional Brownian motion in the Hilbert space.We obtain the global attracting and quasi-i...In this paper,we are concerned with a class of impulsive neutral stochastic functional different equations driven by tempered fractional Brownian motion in the Hilbert space.We obtain the global attracting and quasi-invariant sets of the considered equations driven by tempered fractional Brownian motion B^(α,λ)(t)with 0<α<1/2 andλ>0.In particular,we give some sufficient conditions which ensure the exponential decay in the p-th moment of the mild solution of the considered equations.Finally,an example is given to illustrate the feasibility and effectiveness of the results obtained.展开更多
Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjectur...Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjecture forward.展开更多
Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and glob...Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and global attractivity of almost periodic solutions of almost periodic system.展开更多
Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constru...Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.展开更多
In this paper the global attractivity of the nonlinear difference equationis investigated, where a,b, A ∈ (0,∞), k is an positive integer and the initial conditions x- k, …, x-1 and x0 are arbitrary positive number...In this paper the global attractivity of the nonlinear difference equationis investigated, where a,b, A ∈ (0,∞), k is an positive integer and the initial conditions x- k, …, x-1 and x0 are arbitrary positive numbers. It is shown that the unique positive equilibrium of the equation is global attractive. As a corollary, the result gives a positive confirmation on the conjecture presented by Kocic and Ladas [1,p154].展开更多
A neutral difference equation with positive and negative coefficientsΔ(x n-c nx n-k )+p nx n-l -q nx n-r =0, n=0,1,2,...,is considered and a sufficient condition for the global attractivity of the ze...A neutral difference equation with positive and negative coefficientsΔ(x n-c nx n-k )+p nx n-l -q nx n-r =0, n=0,1,2,...,is considered and a sufficient condition for the global attractivity of the zero solution of this equation is obtained, which improves and extends the all known results in the literature.展开更多
A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical syst...A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free' periodic solution is obtained, further, it is shown that the ‘infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.展开更多
We investigate a stage-structured delayed predator-prey model with impulsive stocking on prey and continuous harvesting on predator. According to the fact of biological resource management, we improve the assumption o...We investigate a stage-structured delayed predator-prey model with impulsive stocking on prey and continuous harvesting on predator. According to the fact of biological resource management, we improve the assumption of a predator-prey model with stage structure for predator population that each individual predator has the same ability to capture prey. It is assumed that the immature and mature individuals of the predator population are divided by a fixed age, and immature predator population does not have the ability to attach prey. Sufficient conditions are obtained, which guarantee the global attractivity of predator-extinction periodic solution and the permanence of the system. Our results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system, and provide tactical basis for the biological resource management. Numerical analysis is presented to illuminate the dynamics of the system.展开更多
In this paper we further study the delay differential equation N .(t)=-δN(t)+pN(t-τ)e -aN(t-τ) , t0(*) used in describing the dynamics of Nicholson’s blowflies. When p】δ ,we establish new su...In this paper we further study the delay differential equation N .(t)=-δN(t)+pN(t-τ)e -aN(t-τ) , t0(*) used in describing the dynamics of Nicholson’s blowflies. When p】δ ,we establish new sufficient conditions for the positive equilibrium N * of (*) which is a global attractor.展开更多
We study a generalized Cauchy problem associated with a class of impulsive fractional differential inclusions of Sobolev type in Banach spaces. Our aim is to prove the existence of a compact set of globally attracting...We study a generalized Cauchy problem associated with a class of impulsive fractional differential inclusions of Sobolev type in Banach spaces. Our aim is to prove the existence of a compact set of globally attracting solutions to the problem in question. An application to fractional partial differential equations subject to impulsive effects is given to illustrate our results.展开更多
The global attractivity of the delay difference equation Deltax(n) + a(n)x(n) + f(n, Sigma(s = -k)(0)(q) over bar (s), (n) x(s + n)) = 0, which includes the discrete type of many mathematical ecological equations, was...The global attractivity of the delay difference equation Deltax(n) + a(n)x(n) + f(n, Sigma(s = -k)(0)(q) over bar (s), (n) x(s + n)) = 0, which includes the discrete type of many mathematical ecological equations, was discussed. The sufficient conditions that guarantee every solution to converge to zero are obtained. Many known results are improved and generated.展开更多
In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity...In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity of partial species are established by used themethods of inequalities estimate and Liapunov functions. As applications, nonautonomous twospecies Lotka-Volterra systems with impulses are discussed.展开更多
In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results c...In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].展开更多
This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real n...This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real numbers, {τ(n)} is a nondecreasing sequence of integers, τ(n)<n and lim n→∞τ(n)=∞ .It is proved that ifnj=τ(n)p j≤54 for sufficiently large n and ∞j=0p j=∞,then all positive solutions of Eq.(*) tend to 1 as n→∞ .The results improve the existing results in literature.展开更多
In this paper, a stochastic two-prey one-predator model with <em>S</em>-type distributed time delays and Lévy noises is considered. Using the comparison theorem and Ito’s formula, sufficient conditio...In this paper, a stochastic two-prey one-predator model with <em>S</em>-type distributed time delays and Lévy noises is considered. Using the comparison theorem and Ito’s formula, sufficient conditions of persistence in the mean and extinct for each population are established. Then, conditions of global attractivity and stability in distribution by Barbalat’s conclusion are also obtained. Furthermore, Euler numerical simulation method is given to demonstrate our conclusions.展开更多
Consider the discrete Lasota Wazewska modelN n+1 -N n =-μN n +pe -rN n-k , n=0,1,2,...(*)where μ∈(0,1),r,p∈(0,∞) and k ∈N.A sufficient condition for all positive solutions of (*) to...Consider the discrete Lasota Wazewska modelN n+1 -N n =-μN n +pe -rN n-k , n=0,1,2,...(*)where μ∈(0,1),r,p∈(0,∞) and k ∈N.A sufficient condition for all positive solutions of (*) to be attracted to its equilibrium N is obtained.It improves correspondent result obtained by Chen and Yu in 1999.展开更多
A delayed predator-prey model concerning impulsive spraying pesticides and releasing natural enemies is proposed and investigated,in which both the prey and the predator have a history that takes them through two stag...A delayed predator-prey model concerning impulsive spraying pesticides and releasing natural enemies is proposed and investigated,in which both the prey and the predator have a history that takes them through two stages:immature and mature.The global attractiveness of the pest-eradication periodic solution is discussed,and sufficient condition is obtained for the permanence of the system.Further,numerical simulations show that there is a characteristic sequence of bifurcations leading to a chaotic dynamics,which implies that the system with constant periodic impulsive perturbations admits rich and complex dynamics.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.60274007,60474011)the Guangdong Povince Science Foundation for Program of Research Team(Grant No.04205783).
文摘Constructing a family of generalized Lyapunov functions, a new method is proposed to obtain new global attractive set and positive invariant set of the Lorenz chaotic system. The method we proposed greatly simplifies the complex proofs of the two famous estimations presented by the Russian scholar Leonov. Our uniform formula can derive a series of the new estimations. Employing the idea of intersection in set theory, we extract a new Leonov formula-like estimation from the family of the estimations. With our method and the new estimation, one can confirm that there are no equilibrium, periodic solutions, almost periodic motions, wandering motions or other chaotic attractors outside the global attractive set. The Lorenz butterfly-like singular attractors are located in the global attractive set only. This result is applied to the chaos control and chaos synchronization. Some feedback control laws are obtained to guarantee that all the trajectories of the Lorenz systems track a periodic solution, or globally stabilize an unstable (or locally stable but not globally asymptotically stable) equilibrium. Further, some new global exponential chaos synchronization results are presented. Our new method and the new results are expected to be applied in real secure communication systems.
基金This work is supported by National Natural Science Foundation of China (10371105) and the NSF of Henan Province (031000)
文摘In this paper, we establish a mathematical model of two species with stage structure and the relation of predator-prey, to obtain conditions that determine the stability of the populations. By the application of comparing argument and exploiting the monotonicity of one equation of the model, we obtain sufficient conditions for the global attractiveness of positive equilibrium .
文摘By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.
基金partially supported by the NNSF of China(No.11901058)
文摘In this paper,we are concerned with a class of impulsive neutral stochastic functional different equations driven by tempered fractional Brownian motion in the Hilbert space.We obtain the global attracting and quasi-invariant sets of the considered equations driven by tempered fractional Brownian motion B^(α,λ)(t)with 0<α<1/2 andλ>0.In particular,we give some sufficient conditions which ensure the exponential decay in the p-th moment of the mild solution of the considered equations.Finally,an example is given to illustrate the feasibility and effectiveness of the results obtained.
文摘Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjecture forward.
基金Supported by the NNSF of China(10671021)the SRF of Hunan Provincial Education Department(09C388)
文摘Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and global attractivity of almost periodic solutions of almost periodic system.
文摘Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.
文摘In this paper the global attractivity of the nonlinear difference equationis investigated, where a,b, A ∈ (0,∞), k is an positive integer and the initial conditions x- k, …, x-1 and x0 are arbitrary positive numbers. It is shown that the unique positive equilibrium of the equation is global attractive. As a corollary, the result gives a positive confirmation on the conjecture presented by Kocic and Ladas [1,p154].
基金the Science Foundation of Educational Committee of Hunan Provinc
文摘A neutral difference equation with positive and negative coefficientsΔ(x n-c nx n-k )+p nx n-l -q nx n-r =0, n=0,1,2,...,is considered and a sufficient condition for the global attractivity of the zero solution of this equation is obtained, which improves and extends the all known results in the literature.
基金the National Natural Science Foundation of China(No.10471117)
文摘A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free' periodic solution is obtained, further, it is shown that the ‘infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.
基金the National Natural Science Foundation of China(No.10771179)the Emphasis Subject of Guizhou Province of China
文摘We investigate a stage-structured delayed predator-prey model with impulsive stocking on prey and continuous harvesting on predator. According to the fact of biological resource management, we improve the assumption of a predator-prey model with stage structure for predator population that each individual predator has the same ability to capture prey. It is assumed that the immature and mature individuals of the predator population are divided by a fixed age, and immature predator population does not have the ability to attach prey. Sufficient conditions are obtained, which guarantee the global attractivity of predator-extinction periodic solution and the permanence of the system. Our results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system, and provide tactical basis for the biological resource management. Numerical analysis is presented to illuminate the dynamics of the system.
文摘In this paper we further study the delay differential equation N .(t)=-δN(t)+pN(t-τ)e -aN(t-τ) , t0(*) used in describing the dynamics of Nicholson’s blowflies. When p】δ ,we establish new sufficient conditions for the positive equilibrium N * of (*) which is a global attractor.
基金supported by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 101.02-2015.18
文摘We study a generalized Cauchy problem associated with a class of impulsive fractional differential inclusions of Sobolev type in Banach spaces. Our aim is to prove the existence of a compact set of globally attracting solutions to the problem in question. An application to fractional partial differential equations subject to impulsive effects is given to illustrate our results.
文摘The global attractivity of the delay difference equation Deltax(n) + a(n)x(n) + f(n, Sigma(s = -k)(0)(q) over bar (s), (n) x(s + n)) = 0, which includes the discrete type of many mathematical ecological equations, was discussed. The sufficient conditions that guarantee every solution to converge to zero are obtained. Many known results are improved and generated.
基金Supported by The National Natural Science Foundation of P.R. China [60764003]The Scientific Research Programmes of Colleges in Xinjiang [XJEDU2007G01, XJEDU2006I05]+1 种基金The National Key Technologies R & D Program of China [2008BAI68B01]The Natural Science Foundation of Jiangxi Province [2008GZS0027]
文摘In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity of partial species are established by used themethods of inequalities estimate and Liapunov functions. As applications, nonautonomous twospecies Lotka-Volterra systems with impulses are discussed.
基金the National Natural Science Foundation of China(61473340)the Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province+1 种基金the National Natural Science Foundation of Zhejiang Province(LQ13A010019)the National Natural Science Foundation of Zhejiang University of Science and Technology(F701108G14).
文摘In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].
文摘This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real numbers, {τ(n)} is a nondecreasing sequence of integers, τ(n)<n and lim n→∞τ(n)=∞ .It is proved that ifnj=τ(n)p j≤54 for sufficiently large n and ∞j=0p j=∞,then all positive solutions of Eq.(*) tend to 1 as n→∞ .The results improve the existing results in literature.
文摘In this paper, a stochastic two-prey one-predator model with <em>S</em>-type distributed time delays and Lévy noises is considered. Using the comparison theorem and Ito’s formula, sufficient conditions of persistence in the mean and extinct for each population are established. Then, conditions of global attractivity and stability in distribution by Barbalat’s conclusion are also obtained. Furthermore, Euler numerical simulation method is given to demonstrate our conclusions.
基金Supported by the Science Foundation of Educational Committee of Hunan Province
文摘Consider the discrete Lasota Wazewska modelN n+1 -N n =-μN n +pe -rN n-k , n=0,1,2,...(*)where μ∈(0,1),r,p∈(0,∞) and k ∈N.A sufficient condition for all positive solutions of (*) to be attracted to its equilibrium N is obtained.It improves correspondent result obtained by Chen and Yu in 1999.
基金Foundation item: Supported by the NNSF of China(11071254) Supported by the Science Foundation of Mechanical Engineering College(YJJXMll004)
文摘A delayed predator-prey model concerning impulsive spraying pesticides and releasing natural enemies is proposed and investigated,in which both the prey and the predator have a history that takes them through two stages:immature and mature.The global attractiveness of the pest-eradication periodic solution is discussed,and sufficient condition is obtained for the permanence of the system.Further,numerical simulations show that there is a characteristic sequence of bifurcations leading to a chaotic dynamics,which implies that the system with constant periodic impulsive perturbations admits rich and complex dynamics.