Existing in-kernel distributed file systems cannot cope with the higher requirements in well- equipped cluster environments, especially when the system becomes larger and inevitably heterogeneous. TH-CluFS is a clus...Existing in-kernel distributed file systems cannot cope with the higher requirements in well- equipped cluster environments, especially when the system becomes larger and inevitably heterogeneous. TH-CluFS is a cluster file system designed for large heterogeneous systems. TH-CluFS is implemented completely in the user space by emulating the network file system (NFS) V2 server, and is easily portable to other portable operating system interface (POSIX)-compliant platforms with application programming/binary interface API/ABI compliance. In addition, TH-CluFS uses a serverless architecture which flexibly distributes data at file granularity and achieves a consistent file system view from distributed metadata. The global cache makes full use of the aggregated memories and disks in the cluster to optimize system performance. Experimental results suggest that although TH-CluFS is implemented as user-level components, it functions as a portable, single system image, and scalable cluster file system with acceptable performance sacrifices.展开更多
This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination.This structure is intended for efficient storage and manipulation of illumination.It is ...This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination.This structure is intended for efficient storage and manipulation of illumination.It is based on a 3D grid that stores a fixed set of irradiance vectors.During preprocessing,this representation can be built using almost any existing global illumination software.During rendering,the indirect illumination within a voxel is interpolated from its associated irradiance vectors,and is used as additional local light sources.Compared with other techniques,the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene.We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.展开更多
基金Supported by the National Natural Science Foundation of China(No. 60073010) and China Grid Project
文摘Existing in-kernel distributed file systems cannot cope with the higher requirements in well- equipped cluster environments, especially when the system becomes larger and inevitably heterogeneous. TH-CluFS is a cluster file system designed for large heterogeneous systems. TH-CluFS is implemented completely in the user space by emulating the network file system (NFS) V2 server, and is easily portable to other portable operating system interface (POSIX)-compliant platforms with application programming/binary interface API/ABI compliance. In addition, TH-CluFS uses a serverless architecture which flexibly distributes data at file granularity and achieves a consistent file system view from distributed metadata. The global cache makes full use of the aggregated memories and disks in the cluster to optimize system performance. Experimental results suggest that although TH-CluFS is implemented as user-level components, it functions as a portable, single system image, and scalable cluster file system with acceptable performance sacrifices.
基金supported by the Lavoisier Grant from French Ministry of Foreign Affairs.Xavier Granier is supported by the Open Project Program of the State Key Lab of CAD&CG,Zhejiang University under Grant No.A1007.
文摘This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination.This structure is intended for efficient storage and manipulation of illumination.It is based on a 3D grid that stores a fixed set of irradiance vectors.During preprocessing,this representation can be built using almost any existing global illumination software.During rendering,the indirect illumination within a voxel is interpolated from its associated irradiance vectors,and is used as additional local light sources.Compared with other techniques,the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene.We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.