A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ...A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.展开更多
This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits ...This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits of increased power generation while ad-dressing the challenges associated with uneven shadowing.The proposed methodology focuses on the implementation of improved sliding-mode control technique for efficient global maximum power point tracking.Sliding-mode control is known for its robustness in the presence of uncertainties and disturbances,making it suitable for dynamic and complex systems such as PV arrays.This work employs a comprehensive simulation framework to comment on the performance of the suggested improved sliding-mode control strategy in uneven shadowing scenarios.Comparative analysis has been done to show the better effectiveness of the suggested method than the traditional control strategies.The results demonstrate a remarkable enhancement in the tracking accuracy of the global maximum power point,leading to enhanced energy-harvesting capabilities under challenging environmental conditions.Furthermore,the proposed approach exhibits robustness and adaptability in mitigating the effect of shading on the PV array,thereby increasing overall system efficiency.This research contributes valuable insights into the development of advanced control strategies for PV arrays,particularly in the context of triple-series–parallel ladder configurations operating under uneven shadowing conditions.Under short narrow shading conditions,the improved sliding-mode control method tracks the maximum power better compared with perturb&observe at 20.68%,incremental-conductance at 68.78%,fuzzy incremental-conductance at 19.8%,and constant-velocity sliding-mode control at 1.25%.The improved sliding-mode control method has 60%less chattering than constant-velocity sliding-mode control under shading conditions.展开更多
Artificial intelligence,machine learning and deep learning algorithms have been widely used for Maximum Power Point Tracking(MPPT)in solar systems.In the traditional MPPT strategies,following of worldwide Global Maxim...Artificial intelligence,machine learning and deep learning algorithms have been widely used for Maximum Power Point Tracking(MPPT)in solar systems.In the traditional MPPT strategies,following of worldwide Global Maximum Power Point(GMPP)under incomplete concealing conditions stay overwhelming assignment and tracks different nearby greatest power focuses under halfway concealing conditions.The advent of artificial intelligence in MPPT has guaranteed of accurate following of GMPP while expanding the significant performance and efficiency of MPPT under Partial Shading Conditions(PSC).Still the selection of an efficient learning based MPPT is complex because each model has its advantages and drawbacks.Recently,Meta-heuristic algorithm based Learning techniques have provided better tracking efficiency but still exhibit dull performances under PSC.This work represents an excellent optimization based on Spotted Hyena Enabled Reliable BAT(SHERB)learning models,SHERB-MPPT integrated with powerful extreme learning machines to identify the GMPP with fast convergence,low steady-state oscillations,and good tracking efficiency.Extensive testing using MATLAB-SIMULINK,with 50000 data combinations gathered under partial shade and normal settings.As a result of simulations,the proposed approach offers 99.7%tracking efficiency with a slower convergence speed.To demonstrate the predominance of the proposed system,we have compared the performance of the system with other hybrid MPPT learning models.Results proved that the proposed cross breed MPPT model had beaten different techniques in recognizing GMPP viably under fractional concealing conditions.展开更多
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提...针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。展开更多
老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数...老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。展开更多
实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群...实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。展开更多
针对局部阴影条件下光伏阵列的P-V曲线呈现多峰值的情况,在研究光伏阵列输出特性的基础上提出了一种全局最大功率点追踪GMPPT(global maximum power point tracking)算法。该算法由均匀光照和局部阴影条件下的两个最大功率点追踪算法构...针对局部阴影条件下光伏阵列的P-V曲线呈现多峰值的情况,在研究光伏阵列输出特性的基础上提出了一种全局最大功率点追踪GMPPT(global maximum power point tracking)算法。该算法由均匀光照和局部阴影条件下的两个最大功率点追踪算法构成。通过所提出的局部阴影检测手段判别光伏阵列所处的光照条件,从而决定使用哪个子算法。最后将该算法在Matlab中进行仿真验证。仿真结果表明在局部阴影条件下该算法能快速地追踪到全局最大功率点,且避免了对整条P-V曲线的扫描。在均匀光照条件下要比传统的最大功率点追踪算法(扰动观察法)更快地定位到最大功率点。展开更多
The output power generation of a photovoltaic(PV)array reduces under partial shading,resulting in multiple local maxima in the PV characteristics and inaccurate tracking of the global maximum power point(GMPP).Various...The output power generation of a photovoltaic(PV)array reduces under partial shading,resulting in multiple local maxima in the PV characteristics and inaccurate tracking of the global maximum power point(GMPP).Various interconnection schemes are available to reduce power losses under partial shading.In this study,a primary key algorithm is proposed for distributing shading across an array.This method is suitable for any n×n PV array configuration and involves fewer calculations and variables,leading to reduced computational complexity.The power generations of a 9×9 PV array under four different shading conditions were compared with the configurations of:total cross-tied(TCT)and Su Du Ku,physical relocation and fixed column position of modules with fixed electrical connection(PRFCPM-FEC),and magic square(MS)and improved-odd-even-prime(IOEP).The advantage of the proposed method is that once the primary key elements are obtained,the remaining array elements are numbered in a simpler manner.The results obtained using the proposed arrangement show that the power is enhanced with reference to the TCT and is comparable to the Su Do Ku,PRFCPM-FEC,MS,and IOEP reconfigurations.展开更多
局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPP...局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPPT中的应用,该方法根据多峰P-U曲线的特性,提出将粒子初始位置分散定位在可能的峰值点电压处这一新思路,保证了粒子群算法不会陷入局部极值点且不会错过任何极值点。设置了粒子群算法的参数,同时提出有效的迭代终止策略,能够避免系统趋于稳定时的功率振荡。最后通过仿真验证了该算法在有、无阴影情况下均能够快速且准确地跟踪最大功率点,有效地提高了光伏阵列输出效率。展开更多
光伏阵列受局部阴影、个别光伏组件故障等影响,输出P-U特性呈多峰现象,此时传统最大功率点跟踪(MPPT)往往无法跟踪到真正的全局最大功率点(MPP)。为了避免由此导致的光伏阵列输出功率大幅度损失,在深入研究阴影条件下光伏阵列多峰功率...光伏阵列受局部阴影、个别光伏组件故障等影响,输出P-U特性呈多峰现象,此时传统最大功率点跟踪(MPPT)往往无法跟踪到真正的全局最大功率点(MPP)。为了避免由此导致的光伏阵列输出功率大幅度损失,在深入研究阴影条件下光伏阵列多峰功率特性的基础上,提出一种自适应全局MPPT方法。当光伏阵列的输出P-U特性发生变化时,该方法能自适应调整跟踪策略寻找到全局MPP。20 k Wp光伏阵列仿真实验和统计分析结果表明,该方法在超过90%的阴影案例中,能准确快速平稳地跟踪到真正的全局MPP,且对开路电压和短路电流估测误差具有鲁棒性。实验测试结果表明:该MPPT方法能在局部阴影发生前后跟踪到光伏阵列的全局MPP。由于原理简单、所需传感器数量少、MPPT跟踪性能优异,自适应MPPT方法具有较好的应用前景。展开更多
文摘A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
文摘This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits of increased power generation while ad-dressing the challenges associated with uneven shadowing.The proposed methodology focuses on the implementation of improved sliding-mode control technique for efficient global maximum power point tracking.Sliding-mode control is known for its robustness in the presence of uncertainties and disturbances,making it suitable for dynamic and complex systems such as PV arrays.This work employs a comprehensive simulation framework to comment on the performance of the suggested improved sliding-mode control strategy in uneven shadowing scenarios.Comparative analysis has been done to show the better effectiveness of the suggested method than the traditional control strategies.The results demonstrate a remarkable enhancement in the tracking accuracy of the global maximum power point,leading to enhanced energy-harvesting capabilities under challenging environmental conditions.Furthermore,the proposed approach exhibits robustness and adaptability in mitigating the effect of shading on the PV array,thereby increasing overall system efficiency.This research contributes valuable insights into the development of advanced control strategies for PV arrays,particularly in the context of triple-series–parallel ladder configurations operating under uneven shadowing conditions.Under short narrow shading conditions,the improved sliding-mode control method tracks the maximum power better compared with perturb&observe at 20.68%,incremental-conductance at 68.78%,fuzzy incremental-conductance at 19.8%,and constant-velocity sliding-mode control at 1.25%.The improved sliding-mode control method has 60%less chattering than constant-velocity sliding-mode control under shading conditions.
文摘Artificial intelligence,machine learning and deep learning algorithms have been widely used for Maximum Power Point Tracking(MPPT)in solar systems.In the traditional MPPT strategies,following of worldwide Global Maximum Power Point(GMPP)under incomplete concealing conditions stay overwhelming assignment and tracks different nearby greatest power focuses under halfway concealing conditions.The advent of artificial intelligence in MPPT has guaranteed of accurate following of GMPP while expanding the significant performance and efficiency of MPPT under Partial Shading Conditions(PSC).Still the selection of an efficient learning based MPPT is complex because each model has its advantages and drawbacks.Recently,Meta-heuristic algorithm based Learning techniques have provided better tracking efficiency but still exhibit dull performances under PSC.This work represents an excellent optimization based on Spotted Hyena Enabled Reliable BAT(SHERB)learning models,SHERB-MPPT integrated with powerful extreme learning machines to identify the GMPP with fast convergence,low steady-state oscillations,and good tracking efficiency.Extensive testing using MATLAB-SIMULINK,with 50000 data combinations gathered under partial shade and normal settings.As a result of simulations,the proposed approach offers 99.7%tracking efficiency with a slower convergence speed.To demonstrate the predominance of the proposed system,we have compared the performance of the system with other hybrid MPPT learning models.Results proved that the proposed cross breed MPPT model had beaten different techniques in recognizing GMPP viably under fractional concealing conditions.
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.21JR7RA280)。
文摘针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。
文摘老化、温度变化和局部阴影等引起的电池电气特性不同,使光伏阵列P-U曲线出现多个功率峰值点。大容量光伏阵列组件数多,其多峰值问题比小容量光伏阵列更常见和复杂。该文首先根据局部阴影条件下光伏阵列分段函数型输出特性,建立其S函数模型。然后提出免疫细菌觅食算法,实现大容量光伏阵列全局最大功率点跟踪(global maximum power point tracking,GMPPT),利用细菌觅食算法的随机选取方向特性和免疫选择算子,实现时变环境下全局最大功率点的动态跟踪,将所有跟踪到的全局最大功率点保存到全局最大功率点记忆池,再利用全局最大功率点记忆池初始化群体和产生迁移个体新位置,加快重复出现全局最大功率点的跟踪速度。仿真结果表明,免疫细菌觅食算法在动态和重复出现局部阴影条件下都有良好的GMPPT跟踪定位能力。
文摘实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。
文摘针对局部阴影条件下光伏阵列的P-V曲线呈现多峰值的情况,在研究光伏阵列输出特性的基础上提出了一种全局最大功率点追踪GMPPT(global maximum power point tracking)算法。该算法由均匀光照和局部阴影条件下的两个最大功率点追踪算法构成。通过所提出的局部阴影检测手段判别光伏阵列所处的光照条件,从而决定使用哪个子算法。最后将该算法在Matlab中进行仿真验证。仿真结果表明在局部阴影条件下该算法能快速地追踪到全局最大功率点,且避免了对整条P-V曲线的扫描。在均匀光照条件下要比传统的最大功率点追踪算法(扰动观察法)更快地定位到最大功率点。
基金Supported by Administration of National Institute of Technology Karnataka,India and Prince Sultan University,Saudi Arabia.
文摘The output power generation of a photovoltaic(PV)array reduces under partial shading,resulting in multiple local maxima in the PV characteristics and inaccurate tracking of the global maximum power point(GMPP).Various interconnection schemes are available to reduce power losses under partial shading.In this study,a primary key algorithm is proposed for distributing shading across an array.This method is suitable for any n×n PV array configuration and involves fewer calculations and variables,leading to reduced computational complexity.The power generations of a 9×9 PV array under four different shading conditions were compared with the configurations of:total cross-tied(TCT)and Su Du Ku,physical relocation and fixed column position of modules with fixed electrical connection(PRFCPM-FEC),and magic square(MS)and improved-odd-even-prime(IOEP).The advantage of the proposed method is that once the primary key elements are obtained,the remaining array elements are numbered in a simpler manner.The results obtained using the proposed arrangement show that the power is enhanced with reference to the TCT and is comparable to the Su Do Ku,PRFCPM-FEC,MS,and IOEP reconfigurations.
文摘局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPPT中的应用,该方法根据多峰P-U曲线的特性,提出将粒子初始位置分散定位在可能的峰值点电压处这一新思路,保证了粒子群算法不会陷入局部极值点且不会错过任何极值点。设置了粒子群算法的参数,同时提出有效的迭代终止策略,能够避免系统趋于稳定时的功率振荡。最后通过仿真验证了该算法在有、无阴影情况下均能够快速且准确地跟踪最大功率点,有效地提高了光伏阵列输出效率。
文摘光伏阵列受局部阴影、个别光伏组件故障等影响,输出P-U特性呈多峰现象,此时传统最大功率点跟踪(MPPT)往往无法跟踪到真正的全局最大功率点(MPP)。为了避免由此导致的光伏阵列输出功率大幅度损失,在深入研究阴影条件下光伏阵列多峰功率特性的基础上,提出一种自适应全局MPPT方法。当光伏阵列的输出P-U特性发生变化时,该方法能自适应调整跟踪策略寻找到全局MPP。20 k Wp光伏阵列仿真实验和统计分析结果表明,该方法在超过90%的阴影案例中,能准确快速平稳地跟踪到真正的全局MPP,且对开路电压和短路电流估测误差具有鲁棒性。实验测试结果表明:该MPPT方法能在局部阴影发生前后跟踪到光伏阵列的全局MPP。由于原理简单、所需传感器数量少、MPPT跟踪性能优异,自适应MPPT方法具有较好的应用前景。