Nowadays global navigation satellite system(GNSS)receivers are the primary tool not only for precision surveying but also for geodesy,geophysics and many other industrial applications worldwide.The only way to assure ...Nowadays global navigation satellite system(GNSS)receivers are the primary tool not only for precision surveying but also for geodesy,geophysics and many other industrial applications worldwide.The only way to assure the accuracy,universality and longevity of GNSS measurements is by calibration of its receivers.The parameters affecting the calibration accuracy of a single GNSS receiver are discussed in this paper.And a geodetic basepoint is established according to previous empirical studies to serve as a reference for calibration.Additionally,the traceability to the systeme international(SI)unit of such kind of calibrations is discussed.Stability of the base point is also verified through long-term measurements over three years.Eventually,a calibration of a sample single GNSS receiver is performed and the uncertainty budget is derived.展开更多
Galileo is the Global Navigation Satellite System that Europe is building and it is planned to be operational in the next 3-5 years. Several Galileo signals use split-spectrum modulations, such as Composite Binary Off...Galileo is the Global Navigation Satellite System that Europe is building and it is planned to be operational in the next 3-5 years. Several Galileo signals use split-spectrum modulations, such as Composite Binary Offset Carrier (CBOC) modulation, which create correlation ambiguities when processed with large or infinite front-end bandwidths (i.e., in wideband receivers). The correlation ambiguities refer to the notches in the correlation shape (i.e., in the envelope of the correlation between incoming signal and reference modulated code) which happen within +/– 1 chip from the main peak. These correlation ambiguities affect adversely the detection probabilities in the code acquisition process and are usually dealt with by using some form of unambiguous processing (e.g., BPSK-like techniques, sideband processing, etc.). In some applications, such as mass-market applications, a narrowband Galileo receiver (i.e., with considerable front-end bandwidth limitation) is likely to be employed. The question addressed in this paper, which has not been answered before, is whether or not this bandwidth limitation can cope inherently with the ambiguities of the correlation function, to which extent, and which the best design options are in the acquisition process (e.g., in terms of time-bin step and ambiguity mitigation mechanisms).展开更多
This article deals with a problem of the robot localization in the outdoor environment by using the GPS (global positioning system) data. In order to navigate the robot, it is necessary to transform the global posit...This article deals with a problem of the robot localization in the outdoor environment by using the GPS (global positioning system) data. In order to navigate the robot, it is necessary to transform the global position into the local map in the form of two-dimensional Cartesian coordinate system. The transformation is based on the model of the Earth-WGS 84 reference ellipsoid. The aim of this article is to experimentally evaluate a set of low-cost GPS receivers applicable as position sensors for small outdoor mobile robots. The evaluation is based on series of measurements executed in different times and places. The measured data is processed by given procedure and acquired positions are transformed into the local coordinate system. Accordingly the accuracy of the measured positions is statistically evaluated. The evaluation of used GPS receivers is done by comparison with data acquired by high-end geodetic GPS system Leica 1200, which is used as a reference GPS system.展开更多
文摘Nowadays global navigation satellite system(GNSS)receivers are the primary tool not only for precision surveying but also for geodesy,geophysics and many other industrial applications worldwide.The only way to assure the accuracy,universality and longevity of GNSS measurements is by calibration of its receivers.The parameters affecting the calibration accuracy of a single GNSS receiver are discussed in this paper.And a geodetic basepoint is established according to previous empirical studies to serve as a reference for calibration.Additionally,the traceability to the systeme international(SI)unit of such kind of calibrations is discussed.Stability of the base point is also verified through long-term measurements over three years.Eventually,a calibration of a sample single GNSS receiver is performed and the uncertainty budget is derived.
文摘Galileo is the Global Navigation Satellite System that Europe is building and it is planned to be operational in the next 3-5 years. Several Galileo signals use split-spectrum modulations, such as Composite Binary Offset Carrier (CBOC) modulation, which create correlation ambiguities when processed with large or infinite front-end bandwidths (i.e., in wideband receivers). The correlation ambiguities refer to the notches in the correlation shape (i.e., in the envelope of the correlation between incoming signal and reference modulated code) which happen within +/– 1 chip from the main peak. These correlation ambiguities affect adversely the detection probabilities in the code acquisition process and are usually dealt with by using some form of unambiguous processing (e.g., BPSK-like techniques, sideband processing, etc.). In some applications, such as mass-market applications, a narrowband Galileo receiver (i.e., with considerable front-end bandwidth limitation) is likely to be employed. The question addressed in this paper, which has not been answered before, is whether or not this bandwidth limitation can cope inherently with the ambiguities of the correlation function, to which extent, and which the best design options are in the acquisition process (e.g., in terms of time-bin step and ambiguity mitigation mechanisms).
文摘This article deals with a problem of the robot localization in the outdoor environment by using the GPS (global positioning system) data. In order to navigate the robot, it is necessary to transform the global position into the local map in the form of two-dimensional Cartesian coordinate system. The transformation is based on the model of the Earth-WGS 84 reference ellipsoid. The aim of this article is to experimentally evaluate a set of low-cost GPS receivers applicable as position sensors for small outdoor mobile robots. The evaluation is based on series of measurements executed in different times and places. The measured data is processed by given procedure and acquired positions are transformed into the local coordinate system. Accordingly the accuracy of the measured positions is statistically evaluated. The evaluation of used GPS receivers is done by comparison with data acquired by high-end geodetic GPS system Leica 1200, which is used as a reference GPS system.
基金Subject National high technology Research And Development Program (2005AA1Z1192)Doctor Project Scientific Research Fund of Taiyuan Science and Technology (200779)
文摘提出了一种基于时延-多普勒映射接收机(DDMR,Delay-Doppler Map Receiver)辅助的载波相位差提取方法,给出了系统结构及信号处理方法.该方法将DDMR中所观测到的码相位差作为直射信号与反射信号的码相位延时量,将完成跟踪的直射信号扩频码进行对应的延时用于完成对反射信号的开环码跟踪.该方法省去了码相位延时搜索的过程,且可以准确地对反射信号扩频码进行同步.为了验证系统的可行性及实际性能,进行了针对水面高度测量的岸基试验并给出了试验结果.岸基试验证明采用该方法的GNSS-R(Global Navigation Satellite System Reflection)接收机可以稳定地对反射信号进行跟踪并提取直射与反射信号的载波相位差,测高精度约为2.5 cm,经过0.5 s的数据平均后精度可达0.6 cm.