To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic prior...To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.展开更多
Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time sched...Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.展开更多
Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling ...Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed.The relevant algorithm, pheromone-based dynamic real-time scheduling algorithm (PBDR), is given.MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out),SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules,i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior toFIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery,especially for on-time delivery performance.展开更多
Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to t...Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.展开更多
Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Fir...Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Firstly, an objective function is designed based on the constraint, and a base load forecasting model is established when aggregating renewable generation and non-deferrable load into a power system, which aims to transform the problem of deferrable loads scheduling into a distributed optimal control problem. Then, to optimize the objective function, a real-time scheduling algorithm is presented to solve the proposed control problem. At every time step, the purpose is to minimize the variance of differences between power supply and aggregate load, which can thus ensure the effective utilization of power resources. Finally, simulation examples are provided to illustrate the effectiveness of the proposed algorithm.展开更多
The existing scheduling algorithms cannot adequately support modern embedded real-time applications. An important challenge for future research is how to model and introduce control mechanisms to real-time systems to ...The existing scheduling algorithms cannot adequately support modern embedded real-time applications. An important challenge for future research is how to model and introduce control mechanisms to real-time systems to improve real-time performance, and to allow the system to adapt to changes in the environment, the workload, or to changes in the system architecture due to failures. In this paper, we pursue this goal by formulating and simulating new real-time scheduling models that enable us to easily analyse feedback scheduling with various constraints, overload and disturbance, and by designing a robust, adaptive scheduler that responds gracefully to overload with robust H∞ and feedback error learning control.展开更多
Data broadcast is an important data dissemination approach in mobile environment. On broadcast channel, scalability and efficiency of data transmission are satisfied. In a mobile environment, there exists a kind of re...Data broadcast is an important data dissemination approach in mobile environment. On broadcast channel, scalability and efficiency of data transmission are satisfied. In a mobile environment, there exists a kind of real-time database application in which both the transactions and data can have their timing constraints and priorities of different levels. In order to meet the requirement of real-time data disseminating and retrieving, a broadcast scheduling strategy HPF-ED F (Highest Priority First with Earlier Deadline and Frequency) is proposed under the BoD (Broadcast on Demand) model. Using the strategy, data items are scheduled according to their priority the transaction imposed on them or system set for them. The strategy also considers other characteristics of data items such as deadline and popularity of data. The extensive simulation experiments have been conducted to evaluate the performance of the proposed algorithm. Results show that it can achieve excellent performance compared with existing strategies.展开更多
In the real-time scheduling theory,schedulability and synchronization analyses are used to evaluate scheduling algorithms and real-time locking protocols,respectively,and the empirical synthesis experiment is one of t...In the real-time scheduling theory,schedulability and synchronization analyses are used to evaluate scheduling algorithms and real-time locking protocols,respectively,and the empirical synthesis experiment is one of the major methods to compare the performance of such analyses.However,since many sophisticated techniques have been adopted to improve the analytical accuracy,the implementation of such analyses and experiments is often time-consuming.This paper proposes a schedulability experiment toolkit for multiprocessor real-time systems(SET-MRTS),which provides a framework with infrastructures to implement the schedulability and synchronization analyses and the deployment of empirical synthesis experiments.Besides,with well-designed peripheral components for the input and output,experiments can be conducted easily and flexibly on SET-MRTS.This demonstration further proves the effectiveness of SET-MRTS in both functionality and availability.展开更多
Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we re...Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.展开更多
By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability ...By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT + EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.展开更多
Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportio...Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.展开更多
AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexami...AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexamined.In particular,it is difficult to immediately handle changes inreal-time tasks without violating the deadline constraints.To cope with thissituation,this paper analyzes the task situations of AI workloads and findsthe following two observations.First,resource planning for AI workloadsis a complicated search problem that requires much time for optimization.Second,although the task set of an AI workload may change over time,thepossible combinations of the task sets are known in advance.Based on theseobservations,this paper proposes a new resource planning scheme for AIworkloads that supports the re-planning of resources.Instead of generatingresource plans on the fly,the proposed scheme pre-determines resourceplans for various combinations of tasks.Thus,in any case,the workload isimmediately executed according to the resource plan maintained.Specifically,the proposed scheme maintains an optimized CPU(Central Processing Unit)and memory resource plan using genetic algorithms and applies it as soonas the workload changes.The proposed scheme is implemented in the opensourcesimulator SimRTS for the validation of its effectiveness.Simulationexperiments show that the proposed scheme reduces the energy consumptionof CPU and memory by 45.5%on average without deadline misses.展开更多
The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,sm...The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,smart systems,and a smart network.In this context,which is characterized by a large gap between training and operative processes,a dedicated method is required to manage and extract the massive amount of data and the related information mining.The method presented in this work aims to reduce this gap with near-zero-failure advanced diagnostics(AD)for smart management,which is exploitable in any context of Society 5.0,thus reducing the risk factors at all management levels and ensuring quality and sustainability.We have also developed innovative applications for a humancentered management system to support scheduling in the maintenance of operative processes,for reducing training costs,for improving production yield,and for creating a human–machine cyberspace for smart infrastructure design.The results obtained in 12 international companies demonstrate a possible global standardization of operative processes,leading to the design of a near-zero-failure intelligent system that is able to learn and upgrade itself.Our new method provides guidance for selecting the new generation of intelligent manufacturing and smart systems in order to optimize human–machine interactions,with the related smart maintenance and education.展开更多
The scheduling of gasoline-blending operations is an important problem in the oil refining industry. Thisproblem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but alsonon-convex ...The scheduling of gasoline-blending operations is an important problem in the oil refining industry. Thisproblem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but alsonon-convex nonlinear behavior, due to the blending of various materials with different quality properties.In this work, a global optimization algorithm is proposed to solve a previously published continuous-timemixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimi-zation, the distribution problem, and several important operational features and constraints. The algorithmemploys piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation tech-nique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of oneof the variables in a bilinear term and generate convex relaxations for each partition. By increasing the num-ber of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates ofthe global solution. The algorithm is compared to two commercial global solvers and two heuristic methodsby solving four examples from the literature. Results show that the proposed global optimization algorithmperforms on par with commercial solvers but is not as fast as heuristic approaches.展开更多
By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on b...By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on both Rate Monotonic,pinwheel scheduling algorithm Sr and Polling Serverscheduling algorithms,can rapidly judge the schedulability and then automatically generate a bus tablefor the scheduling algorithm to schedule the packets as the periodic packets.The implementation of thescheduler is simple and easy to use,and it is effective for the utilization of bus link.The orderly executionof the bus table can not only guarantee the performance of the hard real time but also avoid the blockageand interruption of the message transmission.So the scheduler perfectly meets the demand of hard real-time communication system on the field bus domain.展开更多
A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exp...A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm.展开更多
Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked con...Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints.No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications.However,due to inappropriate message fragmentation,the realtime performance of no-wait scheduling algorithms is reduced.Therefore,in this paper,joint algorithms of message fragmentation and no-wait scheduling are proposed.First,a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions.Second,to improve the scalability of our algorithm,the worst-case delay of messages is analyzed,and then,based on the analysis,a heuristic algorithm is proposed to construct low-delay schedules.Finally,we conduct extensive test cases to evaluate our proposed algorithms.The evaluation results indicate that,compared to existing algorithms,the proposed joint algorithm improves schedulability by up to 50%.展开更多
A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction ...A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.展开更多
With Open Grid Service Architecture (OGSA) as system framework, and Globus Toolkit3.0 (GT3) as developing tools, Manufacturing Grid (MG) is proposed in this research to realize resource sharing and collaborative worki...With Open Grid Service Architecture (OGSA) as system framework, and Globus Toolkit3.0 (GT3) as developing tools, Manufacturing Grid (MG) is proposed in this research to realize resource sharing and collaborative working among manufacturing resources, and task scheduling is one of the most critical components in this system. Nevertheless, the Globus Resource Allocation Manager (GRAM) does not provide scheduling system by default, and traditional performance-guided or economy-guided schedulers cannot satisfy our needs in MG. So, in this paper, a TQCS (Time, Quality, Cost, Service)-based scheduling approach is presented and the corresponding scheduler (Manufacturing Grid Task Scheduler, MGTS) is implemented with the functions of Global Process Planning (GPP) analyzing, resource discovery, resource selection, AHP (Analytic Hierarchy Process)-based resource mapping, and fault-tolerant handling. Furthermore, the application architecture is depicted at the end of the paper to illustrate the utilization of our scheduler.展开更多
Without considering security, existing message scheduling mechanisms may expose critical messages to malicious threats like confidentiality attacks. Incorporating confidentiality improvement into message scheduling, t...Without considering security, existing message scheduling mechanisms may expose critical messages to malicious threats like confidentiality attacks. Incorporating confidentiality improvement into message scheduling, this paper investigates the problem of scheduling aperiodc messages with time-critical and security-critical requirements. A risk-based security profit model is built to quantify the security quality of messages; and a dynamic programming based approximation algorithm is proposed to schedule aperiodic messages with guaranteed security performance. Experimental results illustrate the efficiency and effectiveness of the proposed algorithm.展开更多
基金The Natural Science Foundation of Jiangsu Province(NoBK2005408)
文摘To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.
基金supported by the National Key R&D Program of China (2018YFA0702200)the Fundamental Research Funds of Shandong University。
文摘Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.
基金This project is supported by National 973 Project of China (No.2002-CB312202) National Natural Science Foundation of China (No.60374005, No.60104004) Chinese Postdoctoral Fellowship Foundation.
文摘Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed.The relevant algorithm, pheromone-based dynamic real-time scheduling algorithm (PBDR), is given.MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out),SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules,i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior toFIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery,especially for on-time delivery performance.
基金Project (60505018) supported by the National Natural Science Foundation of China
文摘Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.
文摘Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Firstly, an objective function is designed based on the constraint, and a base load forecasting model is established when aggregating renewable generation and non-deferrable load into a power system, which aims to transform the problem of deferrable loads scheduling into a distributed optimal control problem. Then, to optimize the objective function, a real-time scheduling algorithm is presented to solve the proposed control problem. At every time step, the purpose is to minimize the variance of differences between power supply and aggregate load, which can thus ensure the effective utilization of power resources. Finally, simulation examples are provided to illustrate the effectiveness of the proposed algorithm.
文摘The existing scheduling algorithms cannot adequately support modern embedded real-time applications. An important challenge for future research is how to model and introduce control mechanisms to real-time systems to improve real-time performance, and to allow the system to adapt to changes in the environment, the workload, or to changes in the system architecture due to failures. In this paper, we pursue this goal by formulating and simulating new real-time scheduling models that enable us to easily analyse feedback scheduling with various constraints, overload and disturbance, and by designing a robust, adaptive scheduler that responds gracefully to overload with robust H∞ and feedback error learning control.
基金the National Natural Science Foundation of China(60073045)
文摘Data broadcast is an important data dissemination approach in mobile environment. On broadcast channel, scalability and efficiency of data transmission are satisfied. In a mobile environment, there exists a kind of real-time database application in which both the transactions and data can have their timing constraints and priorities of different levels. In order to meet the requirement of real-time data disseminating and retrieving, a broadcast scheduling strategy HPF-ED F (Highest Priority First with Earlier Deadline and Frequency) is proposed under the BoD (Broadcast on Demand) model. Using the strategy, data items are scheduled according to their priority the transaction imposed on them or system set for them. The strategy also considers other characteristics of data items such as deadline and popularity of data. The extensive simulation experiments have been conducted to evaluate the performance of the proposed algorithm. Results show that it can achieve excellent performance compared with existing strategies.
基金supported by the National Natural Science Foundation of China under Grant No.61802052the Fundamental Research Funds for the Central Universities under Grant No.A030202063008085the China Postdoctoral Science Foundation Funded Project under Grant No.2017M612947。
文摘In the real-time scheduling theory,schedulability and synchronization analyses are used to evaluate scheduling algorithms and real-time locking protocols,respectively,and the empirical synthesis experiment is one of the major methods to compare the performance of such analyses.However,since many sophisticated techniques have been adopted to improve the analytical accuracy,the implementation of such analyses and experiments is often time-consuming.This paper proposes a schedulability experiment toolkit for multiprocessor real-time systems(SET-MRTS),which provides a framework with infrastructures to implement the schedulability and synchronization analyses and the deployment of empirical synthesis experiments.Besides,with well-designed peripheral components for the input and output,experiments can be conducted easily and flexibly on SET-MRTS.This demonstration further proves the effectiveness of SET-MRTS in both functionality and availability.
文摘Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.
基金The National Natural Science Foundationof China(No.60873030 )the National High-Tech Research and Development Plan of China(863 Program)(No.2007AA01Z309)
文摘By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT + EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.
基金This work was funded by the National High Technology Research and Development Program ("863" Program) of China under Grant No.2007AA01Z289
文摘Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.
基金This work was partly supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by theKorean government(MSIT)(No.2021-0-02068,Artificial Intelligence Innovation Hub)(No.RS-2022-00155966,Artificial Intelligence Convergence Innovation Human Resources Development(Ewha University)).
文摘AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexamined.In particular,it is difficult to immediately handle changes inreal-time tasks without violating the deadline constraints.To cope with thissituation,this paper analyzes the task situations of AI workloads and findsthe following two observations.First,resource planning for AI workloadsis a complicated search problem that requires much time for optimization.Second,although the task set of an AI workload may change over time,thepossible combinations of the task sets are known in advance.Based on theseobservations,this paper proposes a new resource planning scheme for AIworkloads that supports the re-planning of resources.Instead of generatingresource plans on the fly,the proposed scheme pre-determines resourceplans for various combinations of tasks.Thus,in any case,the workload isimmediately executed according to the resource plan maintained.Specifically,the proposed scheme maintains an optimized CPU(Central Processing Unit)and memory resource plan using genetic algorithms and applies it as soonas the workload changes.The proposed scheme is implemented in the opensourcesimulator SimRTS for the validation of its effectiveness.Simulationexperiments show that the proposed scheme reduces the energy consumptionof CPU and memory by 45.5%on average without deadline misses.
文摘The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,smart systems,and a smart network.In this context,which is characterized by a large gap between training and operative processes,a dedicated method is required to manage and extract the massive amount of data and the related information mining.The method presented in this work aims to reduce this gap with near-zero-failure advanced diagnostics(AD)for smart management,which is exploitable in any context of Society 5.0,thus reducing the risk factors at all management levels and ensuring quality and sustainability.We have also developed innovative applications for a humancentered management system to support scheduling in the maintenance of operative processes,for reducing training costs,for improving production yield,and for creating a human–machine cyberspace for smart infrastructure design.The results obtained in 12 international companies demonstrate a possible global standardization of operative processes,leading to the design of a near-zero-failure intelligent system that is able to learn and upgrade itself.Our new method provides guidance for selecting the new generation of intelligent manufacturing and smart systems in order to optimize human–machine interactions,with the related smart maintenance and education.
基金Support by Ontario Research FoundationMc Master Advanced Control ConsortiumFundacao para a Ciência e Tecnologia(Investigador FCT 2013 program and project UID/MAT/04561/2013)
文摘The scheduling of gasoline-blending operations is an important problem in the oil refining industry. Thisproblem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but alsonon-convex nonlinear behavior, due to the blending of various materials with different quality properties.In this work, a global optimization algorithm is proposed to solve a previously published continuous-timemixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimi-zation, the distribution problem, and several important operational features and constraints. The algorithmemploys piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation tech-nique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of oneof the variables in a bilinear term and generate convex relaxations for each partition. By increasing the num-ber of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates ofthe global solution. The algorithm is compared to two commercial global solvers and two heuristic methodsby solving four examples from the literature. Results show that the proposed global optimization algorithmperforms on par with commercial solvers but is not as fast as heuristic approaches.
基金Supported by the Emphases Science and Technology Project Foundation of Sichuan Province(NO.02GG006-037)
文摘By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on both Rate Monotonic,pinwheel scheduling algorithm Sr and Polling Serverscheduling algorithms,can rapidly judge the schedulability and then automatically generate a bus tablefor the scheduling algorithm to schedule the packets as the periodic packets.The implementation of thescheduler is simple and easy to use,and it is effective for the utilization of bus link.The orderly executionof the bus table can not only guarantee the performance of the hard real time but also avoid the blockageand interruption of the message transmission.So the scheduler perfectly meets the demand of hard real-time communication system on the field bus domain.
文摘A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm.
基金partially supported by National Key Research and Development Program of China(2018YFB1700200)National Natural Science Foundation of China(61972389,61903356,61803368,U1908212)+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,National Science and Technology Major Project(2017ZX02101007-004)Liaoning Provincial Natural Science Foundation of China(2020-MS-034,2019-YQ-09)China Postdoctoral Science Foundation(2019M661156)。
文摘Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints.No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications.However,due to inappropriate message fragmentation,the realtime performance of no-wait scheduling algorithms is reduced.Therefore,in this paper,joint algorithms of message fragmentation and no-wait scheduling are proposed.First,a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions.Second,to improve the scalability of our algorithm,the worst-case delay of messages is analyzed,and then,based on the analysis,a heuristic algorithm is proposed to construct low-delay schedules.Finally,we conduct extensive test cases to evaluate our proposed algorithms.The evaluation results indicate that,compared to existing algorithms,the proposed joint algorithm improves schedulability by up to 50%.
基金National Natural Science Foundation of China(No.50539120)National Basic Research Program of China("973"Program,No. 2007 CB714101)+1 种基金National Science Fund for Distinguished Young Scholars of China(No.50525927)National Natural Science Founda-tion of China(No.50579045)
文摘A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.
基金This project is supported by Shanghai Science and Technology Committee (No. 025111055)
文摘With Open Grid Service Architecture (OGSA) as system framework, and Globus Toolkit3.0 (GT3) as developing tools, Manufacturing Grid (MG) is proposed in this research to realize resource sharing and collaborative working among manufacturing resources, and task scheduling is one of the most critical components in this system. Nevertheless, the Globus Resource Allocation Manager (GRAM) does not provide scheduling system by default, and traditional performance-guided or economy-guided schedulers cannot satisfy our needs in MG. So, in this paper, a TQCS (Time, Quality, Cost, Service)-based scheduling approach is presented and the corresponding scheduler (Manufacturing Grid Task Scheduler, MGTS) is implemented with the functions of Global Process Planning (GPP) analyzing, resource discovery, resource selection, AHP (Analytic Hierarchy Process)-based resource mapping, and fault-tolerant handling. Furthermore, the application architecture is depicted at the end of the paper to illustrate the utilization of our scheduler.
基金supported by the National Natural Science Foundation of China (60673142)the National High Technology Research and Development Progrm of China (863 Program) (2006AA01Z1732007AA01Z131)
文摘Without considering security, existing message scheduling mechanisms may expose critical messages to malicious threats like confidentiality attacks. Incorporating confidentiality improvement into message scheduling, this paper investigates the problem of scheduling aperiodc messages with time-critical and security-critical requirements. A risk-based security profit model is built to quantify the security quality of messages; and a dynamic programming based approximation algorithm is proposed to schedule aperiodic messages with guaranteed security performance. Experimental results illustrate the efficiency and effectiveness of the proposed algorithm.