High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode...High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.展开更多
高比例分布式电源的不确定性给孤岛配电网的稳定运行带来了的巨大的挑战。针对基于传统分布模型的源荷短期预测存在尖峰和重尾的缺点,采用双向长短时记忆(bidirectional long and short-term memory,BiLSTM)神经网络与非参数核密度法(ke...高比例分布式电源的不确定性给孤岛配电网的稳定运行带来了的巨大的挑战。针对基于传统分布模型的源荷短期预测存在尖峰和重尾的缺点,采用双向长短时记忆(bidirectional long and short-term memory,BiLSTM)神经网络与非参数核密度法(kernel density method,KDE)结合的方法,构建了多场景及不同时间尺度下源荷预测误差的分布模型;并在此基础上,系统多时段运行调控过程中,考虑短时气象的不确定性波动,采用混合整数二阶锥规划(mixed-integer second-order cone programming,MISOCP)对潮流模型进行松弛,并由随机响应面(stochastic response surface,SRSM)得到系统的概率潮流;基于随机响应面法改进Sobol’法,建立计及源荷不确定性的孤岛配电网运行风险的全局灵敏度分析模型。基于此提出一种基于Bi LSTM-SRSM法的风险实时风险评估及调控策略。最后,采用IEEE33节点的辐射型配电网系统验证了所提方法的可行性。展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 50875024,51105040)Excellent Young Scholars Research Fund of Beijing Institute of Technology,China (Grant No.2010Y0102)Defense Creative Research Group Foundation of China(Grant No. GFTD0803)
文摘High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.
文摘高比例分布式电源的不确定性给孤岛配电网的稳定运行带来了的巨大的挑战。针对基于传统分布模型的源荷短期预测存在尖峰和重尾的缺点,采用双向长短时记忆(bidirectional long and short-term memory,BiLSTM)神经网络与非参数核密度法(kernel density method,KDE)结合的方法,构建了多场景及不同时间尺度下源荷预测误差的分布模型;并在此基础上,系统多时段运行调控过程中,考虑短时气象的不确定性波动,采用混合整数二阶锥规划(mixed-integer second-order cone programming,MISOCP)对潮流模型进行松弛,并由随机响应面(stochastic response surface,SRSM)得到系统的概率潮流;基于随机响应面法改进Sobol’法,建立计及源荷不确定性的孤岛配电网运行风险的全局灵敏度分析模型。基于此提出一种基于Bi LSTM-SRSM法的风险实时风险评估及调控策略。最后,采用IEEE33节点的辐射型配电网系统验证了所提方法的可行性。