In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global e...In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
The global robust exponential stability of a class of neural networks with polytopic uncertainties and distributed delays is investigated in this paper.Parameter-dependent Lypaunov-Krasovskii functionals and free-weig...The global robust exponential stability of a class of neural networks with polytopic uncertainties and distributed delays is investigated in this paper.Parameter-dependent Lypaunov-Krasovskii functionals and free-weighting matrices are employed to obtain sufficient condition that guarantee the robust global exponential stability of the equilibrium point of the considered neural networks.The derived sufficient condition is proposed in terms of a set of relaxed linear matrix inequalities (LMIs),which can be checked easily by recently developed algorithms solving LMIs.A numerical example is given to demonstrate the effectiveness of the proposed criteria.展开更多
基金supported by 973 Programs (No.2008CB317110)the Key Project of Chinese Ministry of Education (No.107098)+1 种基金Sichuan Province Project for Applied Basic Research (No.2008JY0052)the Project for Academic Leader and Group of UESTC
文摘In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
文摘The global robust exponential stability of a class of neural networks with polytopic uncertainties and distributed delays is investigated in this paper.Parameter-dependent Lypaunov-Krasovskii functionals and free-weighting matrices are employed to obtain sufficient condition that guarantee the robust global exponential stability of the equilibrium point of the considered neural networks.The derived sufficient condition is proposed in terms of a set of relaxed linear matrix inequalities (LMIs),which can be checked easily by recently developed algorithms solving LMIs.A numerical example is given to demonstrate the effectiveness of the proposed criteria.