Seismic static stress triggering model is tested using Harvard centroid moment tensor (CMT) solution catalogue of 1976~2000 and concept of earthquake doublet. Result shows that seismic static stress triggering effect ...Seismic static stress triggering model is tested using Harvard centroid moment tensor (CMT) solution catalogue of 1976~2000 and concept of earthquake doublet. Result shows that seismic static stress triggering effect does exist in the view of global earthquakes, but the effect is very weak. Dividing the earthquakes into thrust focal mechanism, normal focal mechanism, strike-slip focal mechanism, we find that non-strike-slip focal mechanism earthquakes have significant triggering effect, whereas, the triggering effect in strike-slip focal mechanism earthquakes is not obvious. Divided the subsequent events delay time of earthquake doublet into 5 classes of t1, t<1, t10, t<10, 1t10 (t is in unit of d), then seismic static stress triggering effect does not change with delay time in short time period after earthquakes. The research on seismic static stress triggering in different regions of the world indicates that triggering effect is significant in subduction belts. Seismic static stress triggering model is tested by using earthquake doublets in China and its adjacent region. The result indicates that seismic static stress triggering effect cannot be observed easily in China and its adjacent region due to the seismic focal mechanism type (most of the earthquakes are strike-slip earthquakes).展开更多
The world is projected to experience an approximate doubling of atmospheric CO_2 concentration in the next decades. Rise in atmospheric CO_2 level as one of the most important reasons is expected to contribute to rais...The world is projected to experience an approximate doubling of atmospheric CO_2 concentration in the next decades. Rise in atmospheric CO_2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 ℃-5.8 ℃ by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO_2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species(ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress(OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O_2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to longevity of animals will become very crucial challenge to biologists of the present millennium.展开更多
The apparent lack of pre-seismic crustal deformation preceding the 2008 <span lang="EN-US" style="" color:black;"=""><i><span style="font-family:Verdana;&quo...The apparent lack of pre-seismic crustal deformation preceding the 2008 <span lang="EN-US" style="" color:black;"=""><i><span style="font-family:Verdana;">M</span><span style="font-family:Verdana;">s</span></i></span>8.0 Wenchuan earthquake has been the subject of debate. In this study, tiltmeter data recorded close to the earthquake epicenter were analysed using spectrum and wavelet analysis. Changes in the stress field before the earthquake were analyzed based on the Benioff creep release and changes in regional Global Navigation Satellite System (GNSS) baselines. The characteris-tics of far- and near-field seismicity and deformation processes were investigated using rock fracture experiments. The results show that during pre-seismic strain energy accumu-lation, there was a synergy between stress field changes both proximal and distal to the ep-icenter;moreover, we identified a strong correlation between Benioff creep release and shortening of the LUZH-GUAN GNSS baseline. During the sub-instability stage, the de-formation characteristics of different structural sectors differed;faults near the epicenter were in a highly locked state, and the deformation rate and wave spectra of main period waves obviously decreased. This reflects fixed point deformation driven by deep stress. These results are of great significance for understanding geophysical field observations, for clarifying pre-seismic deformation and for earthquake prediction.展开更多
In this paper, surface wind stress anomalies over the tropical Pacific simulated by an AGCM and by a simple atmospheric model are compared with observed. The AGCM is the higher resolution global spectral model-COLA R4...In this paper, surface wind stress anomalies over the tropical Pacific simulated by an AGCM and by a simple atmospheric model are compared with observed. The AGCM is the higher resolution global spectral model-COLA R40 model and the simple atmospheric model is the atmospheric component of the Cane-Zebiak coupled ocean-atmosphere model.The results show that the wind stress anomalies simulated by both the COLA R40 and the simple model have captured the main features of observation but the x component in the CZ model is closer to that in observation than that in the COLA model, and the correlation coefficients between simulated SSTA from the CZ model and observed for Nino indices are higher than those from the COLA model.展开更多
Heat-ray absorbing film is used to be bonded on the existing sheet glasses of the windows.It is effective for air-conditioning energy saving against the global warming,because it absorbs heat-ray in the thin film and ...Heat-ray absorbing film is used to be bonded on the existing sheet glasses of the windows.It is effective for air-conditioning energy saving against the global warming,because it absorbs heat-ray in the thin film and decreases the incoming heat-ray into the room.On the other hand,the sheet glasses increase the temperature at the surface which the sheet is bonded and sometimes yield heat cracks by thermal stresses.It is important to know the state of thermal stresses accurately in order to develop the heat-ray absorbing film with higher performance and without heat cracks.In this paper,the analysis model is treated as the two-layer plate of the conventional soda sheet glass and the heat-ray absorbing film with different absorptivities.The unsteady temperature and thermal stresses are analyzed and calculated numerically.The influence of the patch side,which the heat-ray absorbing film is bonded at the exterior side or the interior side,on the heat-ray absorbing performance and the thermal stresses is discussed.It is found that the alternative patch side has no effect on the heat-ray absorbing performance and that the patch side is recommended to be interior side from a view point of decreasing thermal stresses against the heat crack of glasses.展开更多
基金Joint Seismological Science Foundation of China (602005).
文摘Seismic static stress triggering model is tested using Harvard centroid moment tensor (CMT) solution catalogue of 1976~2000 and concept of earthquake doublet. Result shows that seismic static stress triggering effect does exist in the view of global earthquakes, but the effect is very weak. Dividing the earthquakes into thrust focal mechanism, normal focal mechanism, strike-slip focal mechanism, we find that non-strike-slip focal mechanism earthquakes have significant triggering effect, whereas, the triggering effect in strike-slip focal mechanism earthquakes is not obvious. Divided the subsequent events delay time of earthquake doublet into 5 classes of t1, t<1, t10, t<10, 1t10 (t is in unit of d), then seismic static stress triggering effect does not change with delay time in short time period after earthquakes. The research on seismic static stress triggering in different regions of the world indicates that triggering effect is significant in subduction belts. Seismic static stress triggering model is tested by using earthquake doublets in China and its adjacent region. The result indicates that seismic static stress triggering effect cannot be observed easily in China and its adjacent region due to the seismic focal mechanism type (most of the earthquakes are strike-slip earthquakes).
基金Supported by Biswaranjan Paital availed Dr.D.S. Kothari PDF fellowship scheme during writing the paper,No.F.4-2/2006(BSR)/13-853/2013(BSR)
文摘The world is projected to experience an approximate doubling of atmospheric CO_2 concentration in the next decades. Rise in atmospheric CO_2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 ℃-5.8 ℃ by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO_2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species(ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress(OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O_2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to longevity of animals will become very crucial challenge to biologists of the present millennium.
文摘The apparent lack of pre-seismic crustal deformation preceding the 2008 <span lang="EN-US" style="" color:black;"=""><i><span style="font-family:Verdana;">M</span><span style="font-family:Verdana;">s</span></i></span>8.0 Wenchuan earthquake has been the subject of debate. In this study, tiltmeter data recorded close to the earthquake epicenter were analysed using spectrum and wavelet analysis. Changes in the stress field before the earthquake were analyzed based on the Benioff creep release and changes in regional Global Navigation Satellite System (GNSS) baselines. The characteris-tics of far- and near-field seismicity and deformation processes were investigated using rock fracture experiments. The results show that during pre-seismic strain energy accumu-lation, there was a synergy between stress field changes both proximal and distal to the ep-icenter;moreover, we identified a strong correlation between Benioff creep release and shortening of the LUZH-GUAN GNSS baseline. During the sub-instability stage, the de-formation characteristics of different structural sectors differed;faults near the epicenter were in a highly locked state, and the deformation rate and wave spectra of main period waves obviously decreased. This reflects fixed point deformation driven by deep stress. These results are of great significance for understanding geophysical field observations, for clarifying pre-seismic deformation and for earthquake prediction.
文摘In this paper, surface wind stress anomalies over the tropical Pacific simulated by an AGCM and by a simple atmospheric model are compared with observed. The AGCM is the higher resolution global spectral model-COLA R40 model and the simple atmospheric model is the atmospheric component of the Cane-Zebiak coupled ocean-atmosphere model.The results show that the wind stress anomalies simulated by both the COLA R40 and the simple model have captured the main features of observation but the x component in the CZ model is closer to that in observation than that in the COLA model, and the correlation coefficients between simulated SSTA from the CZ model and observed for Nino indices are higher than those from the COLA model.
文摘Heat-ray absorbing film is used to be bonded on the existing sheet glasses of the windows.It is effective for air-conditioning energy saving against the global warming,because it absorbs heat-ray in the thin film and decreases the incoming heat-ray into the room.On the other hand,the sheet glasses increase the temperature at the surface which the sheet is bonded and sometimes yield heat cracks by thermal stresses.It is important to know the state of thermal stresses accurately in order to develop the heat-ray absorbing film with higher performance and without heat cracks.In this paper,the analysis model is treated as the two-layer plate of the conventional soda sheet glass and the heat-ray absorbing film with different absorptivities.The unsteady temperature and thermal stresses are analyzed and calculated numerically.The influence of the patch side,which the heat-ray absorbing film is bonded at the exterior side or the interior side,on the heat-ray absorbing performance and the thermal stresses is discussed.It is found that the alternative patch side has no effect on the heat-ray absorbing performance and that the patch side is recommended to be interior side from a view point of decreasing thermal stresses against the heat crack of glasses.