A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main proper...A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.展开更多
This paper discusses the global convergence of a class of nonmonotone conjugate gra- dient methods(NM methods) for nonconvex object functions.This class of methods includes the nonmonotone counterpart of modified Po...This paper discusses the global convergence of a class of nonmonotone conjugate gra- dient methods(NM methods) for nonconvex object functions.This class of methods includes the nonmonotone counterpart of modified Polak- Ribière method and modified Hestenes- Stiefel method as special cases展开更多
A new hybrid MMA-MGCMMA (HMM) algorithm for solving topology optimization problems is presented. This algorithm combines the method of moving asymptotes (MMA) algorithm and the modified globally convergent version...A new hybrid MMA-MGCMMA (HMM) algorithm for solving topology optimization problems is presented. This algorithm combines the method of moving asymptotes (MMA) algorithm and the modified globally convergent version of the method of moving asymptotes (MGCMMA) algorithm in the optimization process. This algorithm preserves the advantages of both MMA and MGCMMA. The optimizer is switched from MMA to MGCMMA automatically, depending on the numerical oscillation value existing in the calculation. This algorithm can improve calculation efficiency and accelerate convergence compared with simplex MMA or MGCMMA algorithms, which is proven with an example.展开更多
基金This work was supported by the National Natural Science Foundation of China (10201001, 70471008)
文摘A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.
基金Supported by the National Natural Science Foundation of China(1 0 1 6 1 0 0 2 ) and Guangxi Natural Sci-ence Foundation (0 1 3 5 0 0 4 )
文摘This paper discusses the global convergence of a class of nonmonotone conjugate gra- dient methods(NM methods) for nonconvex object functions.This class of methods includes the nonmonotone counterpart of modified Polak- Ribière method and modified Hestenes- Stiefel method as special cases
基金This project is supported by National Basic Research Program of China(973Program, No.2003CB716207) and National Hi-tech Research and DevelopmentProgram of China(863 Program, No.2003AA001031).
文摘A new hybrid MMA-MGCMMA (HMM) algorithm for solving topology optimization problems is presented. This algorithm combines the method of moving asymptotes (MMA) algorithm and the modified globally convergent version of the method of moving asymptotes (MGCMMA) algorithm in the optimization process. This algorithm preserves the advantages of both MMA and MGCMMA. The optimizer is switched from MMA to MGCMMA automatically, depending on the numerical oscillation value existing in the calculation. This algorithm can improve calculation efficiency and accelerate convergence compared with simplex MMA or MGCMMA algorithms, which is proven with an example.