Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that we...Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.展开更多
Aim: This study aimed to investigate the effect of non-synonymous SNPs (nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein function and structure using different computational software. Introduct...Aim: This study aimed to investigate the effect of non-synonymous SNPs (nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein function and structure using different computational software. Introduction: The GLP1R gene provides the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes. The protein is an important drug target for the treatment of type-2 diabetes and stroke. Material and Methods: Different nsSNPs and protein-related sequences were obtained from NCBI and ExPASY database. Gene associations and interactions were predicted using GeneMANIA software. Deleterious and damaging effects of nsSNPs were analyzed using SIFT, Provean, and Polyphen-2. The association of the nsSNPs with the disease was predicted using SNPs & GO software. Protein stability was investigated using I-Mutant and MUpro software. The structural and functional impact of point mutations was predicted using Project Hope software. Project Hope analyzes the mutations according to their size, charge, hydrophobicity, and conservancy. Results: The GLP1R gene was found to have an association with 20 other different genes. Among the most important ones is the GCG (glucagon) gene which is also a trans membrane protein. Overall 7229 variants were seen, and the missense variants or nsSNPs (146) were selected for further analysis. The total number of nsSNPs obtained in this study was 146. After being subjected to SIFT software (27 Deleterious and 119 Tolerated) were predicted. Analysis with Provean showed that (20 deleterious and 7 neutral). Analysis using Polyphen-2 revealed 17 probably damaging, 2 possibly damaging and 1 benign nsSNPs. Using two additional software SNPs & GO and PHD-SNPs showed that 14 and 17 nsSNPs had a disease effect, respectively. Project Hope software predicts the effect of the 14 nsSNPs on the protein function due to differences in charge, size, hydrophobicity, and conservancy between the wild and mutant types. Conclusion: In this study, the 14 nsSNPs which were highly affected the protein function. This protein is providing the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes and also affect the treatment of diabetic patients due to the fact that the protein acts as an important drug target.展开更多
Glucagon-like peptide1 (GLP-1) is secreted from Langerhans cells in response to oral nutrient intake. Glucagon- like peptide-1 receptor agonists (GLP-1RAs) are a new class of incretin-based anti-diabetic drugs. They f...Glucagon-like peptide1 (GLP-1) is secreted from Langerhans cells in response to oral nutrient intake. Glucagon- like peptide-1 receptor agonists (GLP-1RAs) are a new class of incretin-based anti-diabetic drugs. They function to stimulate insulin secretion while suppressing glucagon secretion. GLP-1-based therapies are now well established in the management of type 2 diabetes mellitus (T2DM), and recent literature has suggested potential applications of these drugs in the treatment of obesity and for protection against cardiovascular and neurological diseases. As we know, along with change in lifestyles, the prevalence of non-alcoholic fatty liver disease (NAFLD) in China is rising more than that of viral hepatitis and alcoholic fatty liver disease, and NAFLD has become the most common chronic liver disease in recent years. Recent studies further suggest that GLP-1RAs can reduce transaminase levels to improve NAFLD by improving blood lipid levels, cutting down the fat content to promote fat redistribution, directly decreasing fatty degeneration of the liver, reducing the degree of liver fibrosis and improving inflammation. This review shows the NAFLD-associated effects of GLP-1RAs in animal models and in patients with T2DM or obesity who are participants in clinical trials. (C) 2014 Baishideng Publishing Group Inc. All rights reserved.展开更多
AIM: To investigate whether a glucagon-like peptide-1(GLP-1) analogue inhibits nonalcoholic steatohepatitis(NASH), which is being increasingly recognized in Asia, in non-obese mice. METHODS: A methionine-choline-defic...AIM: To investigate whether a glucagon-like peptide-1(GLP-1) analogue inhibits nonalcoholic steatohepatitis(NASH), which is being increasingly recognized in Asia, in non-obese mice. METHODS: A methionine-choline-deficient diet(MCD) along with exendin-4(20 μg/kg per day, ip), a GLP-1 analogue, or saline was administered to male db/db mice(non-obese NASH model). Four or eight weeks after commencement of the diet, the mice were sacrificed and their livers were excised. The excised livers were examined by histochemistry for evidence of hepatic steatosis and inflammation. Hepatic triglyceride(TG) and free fatty acid(FFA) content was measured, and the expression of hepatic fat metabolism- and inflammation-related genes was evaluated. Oxidative stress-related parameters and macrophage recruitment were also examined using immunohistochemistry.RESULTS: Four weeks of MCD feeding induced hepatic steatosis and inflammation and increased the hepatic TG and FFA content. The expression of fattyacid transport protein 4(FATP4), a hepatic FFA influxrelated gene; macrophage recruitment; and the level of malondialdehyde(MDA), an oxidative stress marker, were significantly augmented by a 4-wk MCD. The levels of hepatic sterol regulatory element-binding protein-1c(SREBP-1c) m RNA(lipogenesis-related gene) and acyl-coenzyme A oxidase 1(ACOX1) m RNA(β-oxidation-related gene) had decreased at 4 wk and further decreased at 8 wk. However, the level of microsomal triglyceride transfer protein m RNA(a lipid excretion-related gene) remained unchanged. The administration of exendin-4 significantly attenuated the MCD-induced increase in hepatic steatosis, hepatic TG and FFA content, and FATP4 expression as well as the MCD-induced augmentation of hepatic inflammation, macrophage recruitment, and MDA levels. Additionally, it further decreased the hepatic SREBP-1c level and alleviated the MCD-mediated inhibition of the ACOX1 m RNA level. CONCLUSION: These results suggest that GLP-1 inhibits hepatic steatosis and inflammation through the inhibition of hepatic FFA influx and oxidative stress in a non-obese NASH model.展开更多
Glucagon-like peptide-1(GLP-1)receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus.A number of c...Glucagon-like peptide-1(GLP-1)receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus.A number of case reports show an association of GLP-1receptor agonists,mainly exenatide,with the development of acute kidney injury.The present review aims to present the available data regarding the effects of GLP-1 receptor agonists on renal function,their use in subjects with chronic renal failure and their possible association with acute kidney injury.Based on the current evidence,exenatide is eliminated by renal mechanisms and should not be given in patients with severe renal impairment or end stage renal disease.Liraglutide is not eliminated by renal or hepatic mechanisms,but it should be used with caution since there are only limited data in patients with renal or hepatic impairment.There is evidence from animal studies that GLP-1 receptor agonists exert protective role in diabetic nephropathy with mechanisms that seem to be independent of their glucose-lowering effect.Additionally,there is evidence that GLP-1 receptor agonists influence water and electrolyte balance.These effects may represent new ways to improve or even prevent diabetic nephropathy.展开更多
Objective:To investigate the protective effect of glucagon-like peptid-1(GLP-l) against cardiac microvascular endothelial cell(GTFCs) injured by high glucose.Methods:CMECs were isolated and cultured.Superoxide assay k...Objective:To investigate the protective effect of glucagon-like peptid-1(GLP-l) against cardiac microvascular endothelial cell(GTFCs) injured by high glucose.Methods:CMECs were isolated and cultured.Superoxide assay kit and dihydroethidine(DHE) staining were used to assess oxidative stress.TENEL staining and caspase 3 expression were used to assess the apoptosis of CMECs.H89 was used to inhibit eAMP/PKA pathway:fasudil was used to inhibit Rho/ROCK pathway.The protein expressions of Rho.ROCK uere examined by Western blol analysis.lesults:High glucose increased the production of ROS.the activity of NADPH.the apoptosis rate and the expression level of Rho/ROCK in CMECs.while GLP- 1 decreased high glucose-induced ROS production.the NADPH activity and the apoptosis rate and the expression level of Rho/ROCK in CMECs,the difference were statistically significant(P<0.05).Conclusions:GLP-1 could protect the cardiac microvessels against oxidative stress and apoptosis.The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-dependent manner,resulting in a subsequent decrease in the expression of NADPH oxidase.展开更多
AIM To investigate the role of glucagon-like peptide-1(GLP-1)/glucagon receptors coagonist on renal dysfunction associated with diabetes and obesity. METHODS Chronic high-fat diet fed C57 BL/6 J mice, streptozotocintr...AIM To investigate the role of glucagon-like peptide-1(GLP-1)/glucagon receptors coagonist on renal dysfunction associated with diabetes and obesity. METHODS Chronic high-fat diet fed C57 BL/6 J mice, streptozotocintreated high-fat diet fed C57 BL/6 J mice and diabeticC57 BLKS/J db/db mice were used as models of diabetes-induced renal dysfunction. The streptozotocintreated high-fat diet fed mice and db/db mice were treated with the GLP-1 and glucagon receptors coagonist(Aib2 C24 Chimera2, 150 μg/kg, sc) for twelve weeks, while in chronic high-fat diet fed mice, coagonist(Aib2 C24 Chimera2, 150 μg/kg, sc) treatment was continued for forty weeks. Kidney function, histology, fibrosis, inflammation, and plasma biochemistry were assessed at the end of the treatment. RESULTS Coagonist treatment decreased body weight, plasma lipids, insulin resistance, creatinine, blood urea nitrogen, urinary albumin excretion rate and renal lipids. In kidney, expression of lipogenic genes(SREBP-1 C, FAS, and SCD-1) was decreased, and expression of genes involved in β-oxidation(CPT-1 and PPAR-α) was increased due to coagonist treatment. In plasma, coagonist treatment increased adiponectin and FGF21 and decreased IL-6 and TNF-?. Coagonist treatment reduced expression of inflammatory(TNF-α, MCP-1, and MMP-9) and pro-fibrotic(TGF-β, COL1 A1, and α-SMA) genes and also improved histological derangement in renal tissue.CONCLUSION Coagonist of GLP-1 and glucagon receptors alleviated diabetes and obesity-induced renal dysfunction by reducing glucose intolerance, obesity, and hyperlipidemia.展开更多
Though the pathophysiology of clinical obesity is un-doubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1(GLP-1) signalling. Clinical studies as...Though the pathophysiology of clinical obesity is un-doubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1(GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose(3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed antiobesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and longterm weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need.展开更多
Cardiovascular death is the leading cause of mortality for patients with type 2 diabetes mellitus. The etiologyof cardiovascular disease in diabetes may be divided into hyperglycemia per se and factors operating throu...Cardiovascular death is the leading cause of mortality for patients with type 2 diabetes mellitus. The etiologyof cardiovascular disease in diabetes may be divided into hyperglycemia per se and factors operating through components of metabolic syndrome(Met S). Hyperglycemia causes direct injury to vascular endothelium and possibly on cardiac myocytes. Met S is a cluster of risk factors like obesity, hyperglycemia, hypertension and dyslipidemia. The incidence of this syndrome is rising globally. Glucagon-like peptide-1 receptor agonists(GLP-1RA) are a group of drugs, which address all components of this syndrome favorably. Experimental evidence suggests that they have favorable actions on myocardium as well. Several compounds belonging to GLP-1RA class are in market now and a large number awaiting their entry. Although, originally this class of drugs emerged as a treatment for type 2 diabetes mellitus, more recent data generated revealed beneficial effects on multiple metabolic parameters. We have studied literature published between 2000 and 2016 to look into effects of GLP-1RA on components of Met S. Results from recently concluded clinical trials suggest that some of the molecules in this class may have favorable effects on cardiovascular outcome.展开更多
Non-alcoholic fatty liver disease(NAFLD) is a common liver disease and it represents the hepatic manifestation of metabolic syndrome, which includes type 2 diabetes mellitus(T2DM), dyslipidemia, central obesity an...Non-alcoholic fatty liver disease(NAFLD) is a common liver disease and it represents the hepatic manifestation of metabolic syndrome, which includes type 2 diabetes mellitus(T2DM), dyslipidemia, central obesity and hypertension. Glucagon-like peptide-1(GLP-1) analogues and dipeptidyl peptidase-4(DPP-4) inhibitors were widely used to treat T2 DM. These agents improve glycemic control, promote weight loss and improve lipid metabolism. Recent studies have demonstrated that the GLP-1 receptor(GLP-1R) is present and functional in human and rat hepatocytes. In this review, we present data from animal researches and human clinical studies that showed GLP-1 analogues and DPP-4 inhibitors can decrease hepatic triglyceride(TG) content and improve hepatic steatosis, although some effects could be a result of improvements in metabolic parameters. Multiple hepatocyte signal transduction pathways and m RNA from key enzymes in fatty acid metabolism appear to be activated by GLP-1 and its analogues. Thus, the data support the need for more rigorous prospective clinical trials to further investigate the potential of incretin therapies to treat patients with NAFLD.展开更多
Glucagon-like peptide-1 (GLP-1) and its long-acting analogues have neuroprotective and neurotrophic properties and are emerging as potential treatments for neurodegenerative diseases. Its short half-life has limited...Glucagon-like peptide-1 (GLP-1) and its long-acting analogues have neuroprotective and neurotrophic properties and are emerging as potential treatments for neurodegenerative diseases. Its short half-life has limited the application of GLP-1 in the clinic. We generated a mutated form of human GLP-1 (mGLP-1) using site-directed mutagenesis and gene recombination techniques, and found that these modifications significantly prolonged the biological half-life of GLP-1 compared with native GLP-1 (nGLP-1). This study investigated the role of mGLP-1 on inducing PC12 cell differentiation, mGLP-1 induced PC12 cell differentiation with neurite outgrowth and increased the expression of growth-associated protein-43 and neuronal class III I^-tubulin, and significantly increased cyclic adenosine monophosphate level. No significant difference was found between mGLP-1 and nGLP-I. The results indicate that mGLP-1 activates the GLP-1 receptor, induces PC12 cell differentiation, and has neurotrophic effects.展开更多
Recently, glucagon-like peptide-1(GLP-1) receptor agonists have become a cornerstone for the treatment of obese patients with type 2 diabetes(T2D), exhibiting favorable effects on the cardiovascular outcome. In T2D, i...Recently, glucagon-like peptide-1(GLP-1) receptor agonists have become a cornerstone for the treatment of obese patients with type 2 diabetes(T2D), exhibiting favorable effects on the cardiovascular outcome. In T2D, impaired GLP-1 secretion/function is observed, and gut microbiota dysbiosis is related to the GLP-1 resistance. Prior research has revealed that exercise increases GLP-1 levels in healthy and obese individuals; however, the efficacy of exercise on GLP-1 levels in patients with T2D remains unclear. Exercise may improve GLP-1 resistance rather than GLP-1 secretion in patients with T2D. Exercise increases the gut microbiota diversity, which could contribute to improving the GLP-1 resistance of T2D. Furthermore, the gut microbiota may play a role in the correlation between exercise and GLP-1. The combination of exercise and GLP-1-based therapy may have a synergistic effect on the treatment of T2D. Although the underlying mechanism remains unknown, exercise potentiates the efficacy of GLP-1 receptor agonist treatment in patients with T2D.展开更多
AIM To evaluate the effects of glucagon-like peptide-1 analogs(GLP-1 a) combined with insulin on myocardial ischemiareperfusion injury in diabetic rats.METHODS Type 2 diabetes mellitus(T2 DM) was induced in maleWistar...AIM To evaluate the effects of glucagon-like peptide-1 analogs(GLP-1 a) combined with insulin on myocardial ischemiareperfusion injury in diabetic rats.METHODS Type 2 diabetes mellitus(T2 DM) was induced in maleWistar rats with streptozotocin(65 mg/kg) and verified using an oral glucose tolerance test. After anesthesia, the left coronary artery was occluded for 40 min followed by 80 min reperfusion. Blood glucose level was measured during surgery. Rats were randomized into six groups as follows:(1) control rats;(2) insulin(0.1 U/kg) treated rats prior to ischemia;(3) insulin(0.1 U/kg) treated rats at reperfusion;(4) GLP-1 a(140 mg/kg) treated rats prior to ischemia;(5) GLP-1 a(140 mg/kg) treated rats at reperfusion; and(6) rats treated with GLP-1 a(140 mg/kg) prior to ischemia plus insulin(0.1 U/kg) at reperfusion. Myocardial area at risk and infarct size was measured planimetrically using Evans blue and triphenyltetrazolium chloride staining, respectively.RESULTS There was no significant difference in the myocardial area at risk among groups. Insulin treatment before ischemia resulted in a significant increase in infarct size(34.7% ± 3.4% vs 18.6% ± 3.1% in the control rats, P < 0.05). Post-ischemic administration of insulin or GLP-1 a had no effect on infarct size. However, pre-ischemic administration of GLP-1 a reduced infarct size to 12% ± 2.2%(P < 0.05). The maximal infarct size reduction was observed in the group treated with GLP-1 a prior to ischemia and insulin at reperfusion(8% ± 1.6%, P < 0.05 vs the control and GLP-1 a alone treated groups).CONCLUSION GLP-1 a pre-administration results in myocardial infarct size reduction in rats with T2 DM. These effects are maximal in rats treated with GLP-1 a pre-ischemia plus insulin at reperfusion.展开更多
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia.Type 2 diabetes (T2DM) accounting for 90% of cases globally.The worldwide prevalence of DM is rising dramatically over the last deca...Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia.Type 2 diabetes (T2DM) accounting for 90% of cases globally.The worldwide prevalence of DM is rising dramatically over the last decades,from 30 million cases in 1985 to 382 million cases in 2013.It’s estimated that 451 million people had diabetes in 2017.As the pathophysiology was understood over the years,treatment options for diabetes increased.Incretin-based therapy is one of them.Glucagon-like peptide-1 receptor agonist (GLP-1 RA) not only significantly lower glucose level with minimal risk of hypoglycemia but also,they have an important advantage in themanagement of cardiovascular risk and obesity.Thus,we will review here GLP-1 RAsrole in the treatment of diabetes.展开更多
AIM: To systematically assess risk of pancreatic adverse events with glucagon-like peptide-1(GLP-1) receptor agonist and dipeptidyl peptidase-4(DPP-4) inhibitor drugs.METHODS: We searched Pub Med, Embase, CINAHL, Coch...AIM: To systematically assess risk of pancreatic adverse events with glucagon-like peptide-1(GLP-1) receptor agonist and dipeptidyl peptidase-4(DPP-4) inhibitor drugs.METHODS: We searched Pub Med, Embase, CINAHL, Cochrane review of clinical trials, pharmaceutical company clinical trials register, United States Food and Drug Administration website, European Medicines Agency website and Clinical Trials.gov for randomized controlled trials from inception to October 2013. Randomized control trial studies were selected for inclusion if they reported on pancreatic complication events and/or changes in pancreatic enzyme levels(serum amylase and serum lipase) as adverse events or as serious adverse events for patients who were on GLP-1 receptor agonist and DPP-4 inhibitor drugs. Two independent reviewers extracted data directly. We performed Peto odds ratio(OR) fixed effect meta-analysis of pancreatic adverse events a, and assessed heterogeneity with the I^2 statistic.RESULTS: Sixty-eight randomized controlled trials were eligible. A total of 60720 patients were included in our analysis of the association of risk of pancreatic complication events with GLP-1 agents. A total of 89 pancreatic related adverse events occurred among the GLP-1 agents compared to 74 events among the controls. There was a statistically significant increased risk of elevation of pancreatic enzymes associated with GLP-1 agents compared with control(Peto OR = 3.15, 95%CI: 1.56-6.39, P = 0.001, I2 = 0%). There was no statistically significant difference in the risk of pancreatic adverse event associated with GLP-1 agent compared with controls(Peto OR = 1.00, 95%CI: 0.73-1.37, P = 1.00, I2 = 0%). There were a total of 71 pancreatitis events in patients on GLP-1 agents and 56 pancreatitis events occurred in the control patients. There were 36 reports of pancreatic cancer in these studies. Of these cases, 2 used linagliptin, 2 used alogliptin, 1 used vildagliptin, 7 used saxagliptin while 6 used sitagliptin. The remaining 18 cases occurred among controls.CONCLUSION: Although GLP-1 based agents are associated with pancreatic enzyme elevation, we were unable to confirm a significant risk of pancreatitis or pancreatic cancer.展开更多
Objective: To observe the effect of glucagon-like peptide 1 (GLP-1) on the gene expressions of transcription factors (PDX-1, PAX-6 and NKx2.2 ) in freshly isolated rat pancreatic islets and investigate the associ...Objective: To observe the effect of glucagon-like peptide 1 (GLP-1) on the gene expressions of transcription factors (PDX-1, PAX-6 and NKx2.2 ) in freshly isolated rat pancreatic islets and investigate the associated physiological and therapeutic implication of GLP-1. Methods: The isolated rat islets were incubated with 10 nmol/L GLP-1 for 1, 3 and 5 days, respectively. Total cellular RNA was extracted and the expressions of PDX-1, PAX-6 and NKx2.2 gene were detected by semiquantity RT-PCR. Results: Compared with the control group, the PDX-1, PAX-6 and NKx2.2 gene expressions were significantly increased after co-cultured with GLP-1 for 1 day (P 〈 0.05). The effect was shown in a time-dependent manner. All three gene expressions reached the peak on the 5th day. Conclusion: GLP-1 can improve the function of pancreatic islet by regulating the gene expressions of transcription factors in β cells.展开更多
AIM: To investigate whether active glucagon-like peptide-1(GLP-1) is a prediction Factor of Effect of sitagliptin on patients with type 2 diabetes mellitus(GLP-1 FEST:UMIN000010645). METHODS: Seventy-six patients with...AIM: To investigate whether active glucagon-like peptide-1(GLP-1) is a prediction Factor of Effect of sitagliptin on patients with type 2 diabetes mellitus(GLP-1 FEST:UMIN000010645). METHODS: Seventy-six patients with type 2 diabetes, who had insufficient glycemic control [Hemoglobin A1c(Hb A1c) ≥ 7%] in spite of treatment with metformin and/or sulfonylurea, were included in the investigation. Patients were divided into three groups by tertiles of fasting plasma active GLP-1 level, before the administration of 50 mg sitagliptin. RESULTS: At baseline, body mass index, serum UA, insulin and HOMA-IR were higher in the high active GLP-1 group than in the other two groups. The high active GLP-1 group did not show any decline of Hb A1c(7.6% ± 1.4% to 7.5% ± 1.5%), whereas the middle and low groups indicated significant decline of Hb A1c(7.4 ± 0.7 to 6.8 ± 0.6 and 7.4 ± 1.2 to 6.9 ± 1.3, respectively) during six months. Only the low and middle groups showed a significant increment of active GLP-1, C-peptide level, a decreased log and proinsulin/insulin ratio after administration. In logistic analysis, the low or middle group is a significantexplanatory variable for an Hb A1 c decrease of ≥ 0.5%, and its odds ratio is 4.5(1.40-17.6)(P = 0.01) against the high active GLP-1 group. This remains independent when adjusted for Hb A1 c level before administration, patients' medical history, medications, insulin secretion and insulin resistance.CONCLUSION: Plasma fasting active GLP-1 is an independent predictive marker for the efficacy of dipeptidyl peptidase 4 inhibitor sitagliptin.展开更多
Fatty acid modified glucagon-like peptide-1(7-36) amide was synthesized efficiently on Rink-Amide-MBHA resin by microwave-assisted solid phase method.The method of thermal and controlled microwave irradiation provided...Fatty acid modified glucagon-like peptide-1(7-36) amide was synthesized efficiently on Rink-Amide-MBHA resin by microwave-assisted solid phase method.The method of thermal and controlled microwave irradiation provided impressive enhancements in product yield,selectivity,and reaction rate.The coupling time was dramatically decreased to 6 min,and the desired products were obtained in high yield and purity.展开更多
Nutritional regulation plays a critical role to reduce the incidence or progression of diabetes mellitus. In this study, we investigated the effects of a high-fat diet on Spontaneously Diabetic Torii Leprfa (SDT fatty...Nutritional regulation plays a critical role to reduce the incidence or progression of diabetes mellitus. In this study, we investigated the effects of a high-fat diet on Spontaneously Diabetic Torii Leprfa (SDT fatty) rats, a novel model for obese type 2 diabetes. The SDT fatty rats were divided into two dietary groups, which were fed a high-fat diet or a standard diet for 18 weeks, from 6 to 24 weeks of age. The calorie intake in the high-fat diet (HF) group was reduced after 10 weeks of age and the group inhibited an incidence of diabetes. Interestingly, the HF induced an increase of serum glucagon-like peptide-1 (GLP-1) levels in SDT fatty rats with refeeding. Fat tissue weights in the HF group increased, but the visceral fat/subcutaneous fat (V/S) ratio decreased. Moreover, histopathological observations revealed an improvement of the pancreatic abnormalities and fatty liver in the HF group. In conclusion, a preventive effect on diabetes in rats fed a high-fat diet has a relation with an increase in incretin hormone, and it might be advantageous for prevention of incidence or progression of diabetes to develop functional foods inducing an increase in incretin hormone.展开更多
文摘Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.
文摘Aim: This study aimed to investigate the effect of non-synonymous SNPs (nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein function and structure using different computational software. Introduction: The GLP1R gene provides the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes. The protein is an important drug target for the treatment of type-2 diabetes and stroke. Material and Methods: Different nsSNPs and protein-related sequences were obtained from NCBI and ExPASY database. Gene associations and interactions were predicted using GeneMANIA software. Deleterious and damaging effects of nsSNPs were analyzed using SIFT, Provean, and Polyphen-2. The association of the nsSNPs with the disease was predicted using SNPs & GO software. Protein stability was investigated using I-Mutant and MUpro software. The structural and functional impact of point mutations was predicted using Project Hope software. Project Hope analyzes the mutations according to their size, charge, hydrophobicity, and conservancy. Results: The GLP1R gene was found to have an association with 20 other different genes. Among the most important ones is the GCG (glucagon) gene which is also a trans membrane protein. Overall 7229 variants were seen, and the missense variants or nsSNPs (146) were selected for further analysis. The total number of nsSNPs obtained in this study was 146. After being subjected to SIFT software (27 Deleterious and 119 Tolerated) were predicted. Analysis with Provean showed that (20 deleterious and 7 neutral). Analysis using Polyphen-2 revealed 17 probably damaging, 2 possibly damaging and 1 benign nsSNPs. Using two additional software SNPs & GO and PHD-SNPs showed that 14 and 17 nsSNPs had a disease effect, respectively. Project Hope software predicts the effect of the 14 nsSNPs on the protein function due to differences in charge, size, hydrophobicity, and conservancy between the wild and mutant types. Conclusion: In this study, the 14 nsSNPs which were highly affected the protein function. This protein is providing the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes and also affect the treatment of diabetic patients due to the fact that the protein acts as an important drug target.
文摘Glucagon-like peptide1 (GLP-1) is secreted from Langerhans cells in response to oral nutrient intake. Glucagon- like peptide-1 receptor agonists (GLP-1RAs) are a new class of incretin-based anti-diabetic drugs. They function to stimulate insulin secretion while suppressing glucagon secretion. GLP-1-based therapies are now well established in the management of type 2 diabetes mellitus (T2DM), and recent literature has suggested potential applications of these drugs in the treatment of obesity and for protection against cardiovascular and neurological diseases. As we know, along with change in lifestyles, the prevalence of non-alcoholic fatty liver disease (NAFLD) in China is rising more than that of viral hepatitis and alcoholic fatty liver disease, and NAFLD has become the most common chronic liver disease in recent years. Recent studies further suggest that GLP-1RAs can reduce transaminase levels to improve NAFLD by improving blood lipid levels, cutting down the fat content to promote fat redistribution, directly decreasing fatty degeneration of the liver, reducing the degree of liver fibrosis and improving inflammation. This review shows the NAFLD-associated effects of GLP-1RAs in animal models and in patients with T2DM or obesity who are participants in clinical trials. (C) 2014 Baishideng Publishing Group Inc. All rights reserved.
基金Supported by Grant-in-Aid from the Ministry of Education, Culture, Sport, Science and Technology of Japan to Nakade Y and Yoneda M and a grant from the Aikeikai Foundation
文摘AIM: To investigate whether a glucagon-like peptide-1(GLP-1) analogue inhibits nonalcoholic steatohepatitis(NASH), which is being increasingly recognized in Asia, in non-obese mice. METHODS: A methionine-choline-deficient diet(MCD) along with exendin-4(20 μg/kg per day, ip), a GLP-1 analogue, or saline was administered to male db/db mice(non-obese NASH model). Four or eight weeks after commencement of the diet, the mice were sacrificed and their livers were excised. The excised livers were examined by histochemistry for evidence of hepatic steatosis and inflammation. Hepatic triglyceride(TG) and free fatty acid(FFA) content was measured, and the expression of hepatic fat metabolism- and inflammation-related genes was evaluated. Oxidative stress-related parameters and macrophage recruitment were also examined using immunohistochemistry.RESULTS: Four weeks of MCD feeding induced hepatic steatosis and inflammation and increased the hepatic TG and FFA content. The expression of fattyacid transport protein 4(FATP4), a hepatic FFA influxrelated gene; macrophage recruitment; and the level of malondialdehyde(MDA), an oxidative stress marker, were significantly augmented by a 4-wk MCD. The levels of hepatic sterol regulatory element-binding protein-1c(SREBP-1c) m RNA(lipogenesis-related gene) and acyl-coenzyme A oxidase 1(ACOX1) m RNA(β-oxidation-related gene) had decreased at 4 wk and further decreased at 8 wk. However, the level of microsomal triglyceride transfer protein m RNA(a lipid excretion-related gene) remained unchanged. The administration of exendin-4 significantly attenuated the MCD-induced increase in hepatic steatosis, hepatic TG and FFA content, and FATP4 expression as well as the MCD-induced augmentation of hepatic inflammation, macrophage recruitment, and MDA levels. Additionally, it further decreased the hepatic SREBP-1c level and alleviated the MCD-mediated inhibition of the ACOX1 m RNA level. CONCLUSION: These results suggest that GLP-1 inhibits hepatic steatosis and inflammation through the inhibition of hepatic FFA influx and oxidative stress in a non-obese NASH model.
文摘Glucagon-like peptide-1(GLP-1)receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus.A number of case reports show an association of GLP-1receptor agonists,mainly exenatide,with the development of acute kidney injury.The present review aims to present the available data regarding the effects of GLP-1 receptor agonists on renal function,their use in subjects with chronic renal failure and their possible association with acute kidney injury.Based on the current evidence,exenatide is eliminated by renal mechanisms and should not be given in patients with severe renal impairment or end stage renal disease.Liraglutide is not eliminated by renal or hepatic mechanisms,but it should be used with caution since there are only limited data in patients with renal or hepatic impairment.There is evidence from animal studies that GLP-1 receptor agonists exert protective role in diabetic nephropathy with mechanisms that seem to be independent of their glucose-lowering effect.Additionally,there is evidence that GLP-1 receptor agonists influence water and electrolyte balance.These effects may represent new ways to improve or even prevent diabetic nephropathy.
基金supported by Shanghai Municipal Health Bureau Youth Subject(NO.20134y116)
文摘Objective:To investigate the protective effect of glucagon-like peptid-1(GLP-l) against cardiac microvascular endothelial cell(GTFCs) injured by high glucose.Methods:CMECs were isolated and cultured.Superoxide assay kit and dihydroethidine(DHE) staining were used to assess oxidative stress.TENEL staining and caspase 3 expression were used to assess the apoptosis of CMECs.H89 was used to inhibit eAMP/PKA pathway:fasudil was used to inhibit Rho/ROCK pathway.The protein expressions of Rho.ROCK uere examined by Western blol analysis.lesults:High glucose increased the production of ROS.the activity of NADPH.the apoptosis rate and the expression level of Rho/ROCK in CMECs.while GLP- 1 decreased high glucose-induced ROS production.the NADPH activity and the apoptosis rate and the expression level of Rho/ROCK in CMECs,the difference were statistically significant(P<0.05).Conclusions:GLP-1 could protect the cardiac microvessels against oxidative stress and apoptosis.The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-dependent manner,resulting in a subsequent decrease in the expression of NADPH oxidase.
文摘AIM To investigate the role of glucagon-like peptide-1(GLP-1)/glucagon receptors coagonist on renal dysfunction associated with diabetes and obesity. METHODS Chronic high-fat diet fed C57 BL/6 J mice, streptozotocintreated high-fat diet fed C57 BL/6 J mice and diabeticC57 BLKS/J db/db mice were used as models of diabetes-induced renal dysfunction. The streptozotocintreated high-fat diet fed mice and db/db mice were treated with the GLP-1 and glucagon receptors coagonist(Aib2 C24 Chimera2, 150 μg/kg, sc) for twelve weeks, while in chronic high-fat diet fed mice, coagonist(Aib2 C24 Chimera2, 150 μg/kg, sc) treatment was continued for forty weeks. Kidney function, histology, fibrosis, inflammation, and plasma biochemistry were assessed at the end of the treatment. RESULTS Coagonist treatment decreased body weight, plasma lipids, insulin resistance, creatinine, blood urea nitrogen, urinary albumin excretion rate and renal lipids. In kidney, expression of lipogenic genes(SREBP-1 C, FAS, and SCD-1) was decreased, and expression of genes involved in β-oxidation(CPT-1 and PPAR-α) was increased due to coagonist treatment. In plasma, coagonist treatment increased adiponectin and FGF21 and decreased IL-6 and TNF-?. Coagonist treatment reduced expression of inflammatory(TNF-α, MCP-1, and MMP-9) and pro-fibrotic(TGF-β, COL1 A1, and α-SMA) genes and also improved histological derangement in renal tissue.CONCLUSION Coagonist of GLP-1 and glucagon receptors alleviated diabetes and obesity-induced renal dysfunction by reducing glucose intolerance, obesity, and hyperlipidemia.
文摘Though the pathophysiology of clinical obesity is un-doubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1(GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose(3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed antiobesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and longterm weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need.
文摘Cardiovascular death is the leading cause of mortality for patients with type 2 diabetes mellitus. The etiologyof cardiovascular disease in diabetes may be divided into hyperglycemia per se and factors operating through components of metabolic syndrome(Met S). Hyperglycemia causes direct injury to vascular endothelium and possibly on cardiac myocytes. Met S is a cluster of risk factors like obesity, hyperglycemia, hypertension and dyslipidemia. The incidence of this syndrome is rising globally. Glucagon-like peptide-1 receptor agonists(GLP-1RA) are a group of drugs, which address all components of this syndrome favorably. Experimental evidence suggests that they have favorable actions on myocardium as well. Several compounds belonging to GLP-1RA class are in market now and a large number awaiting their entry. Although, originally this class of drugs emerged as a treatment for type 2 diabetes mellitus, more recent data generated revealed beneficial effects on multiple metabolic parameters. We have studied literature published between 2000 and 2016 to look into effects of GLP-1RA on components of Met S. Results from recently concluded clinical trials suggest that some of the molecules in this class may have favorable effects on cardiovascular outcome.
基金supported in part by grants from the National Basic Research Program of China(No.2012CB524900)Department of Science&Technology of Shandong Province,China(Nos.2012GSF11824 and 2011780)
文摘Non-alcoholic fatty liver disease(NAFLD) is a common liver disease and it represents the hepatic manifestation of metabolic syndrome, which includes type 2 diabetes mellitus(T2DM), dyslipidemia, central obesity and hypertension. Glucagon-like peptide-1(GLP-1) analogues and dipeptidyl peptidase-4(DPP-4) inhibitors were widely used to treat T2 DM. These agents improve glycemic control, promote weight loss and improve lipid metabolism. Recent studies have demonstrated that the GLP-1 receptor(GLP-1R) is present and functional in human and rat hepatocytes. In this review, we present data from animal researches and human clinical studies that showed GLP-1 analogues and DPP-4 inhibitors can decrease hepatic triglyceride(TG) content and improve hepatic steatosis, although some effects could be a result of improvements in metabolic parameters. Multiple hepatocyte signal transduction pathways and m RNA from key enzymes in fatty acid metabolism appear to be activated by GLP-1 and its analogues. Thus, the data support the need for more rigorous prospective clinical trials to further investigate the potential of incretin therapies to treat patients with NAFLD.
基金the National Natural Science Foundation of China,No.81070876the Shanghai Science and Technology Commission,No.10JC1411200the Fundamental Research Funds for the Central Universities
文摘Glucagon-like peptide-1 (GLP-1) and its long-acting analogues have neuroprotective and neurotrophic properties and are emerging as potential treatments for neurodegenerative diseases. Its short half-life has limited the application of GLP-1 in the clinic. We generated a mutated form of human GLP-1 (mGLP-1) using site-directed mutagenesis and gene recombination techniques, and found that these modifications significantly prolonged the biological half-life of GLP-1 compared with native GLP-1 (nGLP-1). This study investigated the role of mGLP-1 on inducing PC12 cell differentiation, mGLP-1 induced PC12 cell differentiation with neurite outgrowth and increased the expression of growth-associated protein-43 and neuronal class III I^-tubulin, and significantly increased cyclic adenosine monophosphate level. No significant difference was found between mGLP-1 and nGLP-I. The results indicate that mGLP-1 activates the GLP-1 receptor, induces PC12 cell differentiation, and has neurotrophic effects.
文摘Recently, glucagon-like peptide-1(GLP-1) receptor agonists have become a cornerstone for the treatment of obese patients with type 2 diabetes(T2D), exhibiting favorable effects on the cardiovascular outcome. In T2D, impaired GLP-1 secretion/function is observed, and gut microbiota dysbiosis is related to the GLP-1 resistance. Prior research has revealed that exercise increases GLP-1 levels in healthy and obese individuals; however, the efficacy of exercise on GLP-1 levels in patients with T2D remains unclear. Exercise may improve GLP-1 resistance rather than GLP-1 secretion in patients with T2D. Exercise increases the gut microbiota diversity, which could contribute to improving the GLP-1 resistance of T2D. Furthermore, the gut microbiota may play a role in the correlation between exercise and GLP-1. The combination of exercise and GLP-1-based therapy may have a synergistic effect on the treatment of T2D. Although the underlying mechanism remains unknown, exercise potentiates the efficacy of GLP-1 receptor agonist treatment in patients with T2D.
基金Supported by Russian Science Foundation,No.17-75-30052
文摘AIM To evaluate the effects of glucagon-like peptide-1 analogs(GLP-1 a) combined with insulin on myocardial ischemiareperfusion injury in diabetic rats.METHODS Type 2 diabetes mellitus(T2 DM) was induced in maleWistar rats with streptozotocin(65 mg/kg) and verified using an oral glucose tolerance test. After anesthesia, the left coronary artery was occluded for 40 min followed by 80 min reperfusion. Blood glucose level was measured during surgery. Rats were randomized into six groups as follows:(1) control rats;(2) insulin(0.1 U/kg) treated rats prior to ischemia;(3) insulin(0.1 U/kg) treated rats at reperfusion;(4) GLP-1 a(140 mg/kg) treated rats prior to ischemia;(5) GLP-1 a(140 mg/kg) treated rats at reperfusion; and(6) rats treated with GLP-1 a(140 mg/kg) prior to ischemia plus insulin(0.1 U/kg) at reperfusion. Myocardial area at risk and infarct size was measured planimetrically using Evans blue and triphenyltetrazolium chloride staining, respectively.RESULTS There was no significant difference in the myocardial area at risk among groups. Insulin treatment before ischemia resulted in a significant increase in infarct size(34.7% ± 3.4% vs 18.6% ± 3.1% in the control rats, P < 0.05). Post-ischemic administration of insulin or GLP-1 a had no effect on infarct size. However, pre-ischemic administration of GLP-1 a reduced infarct size to 12% ± 2.2%(P < 0.05). The maximal infarct size reduction was observed in the group treated with GLP-1 a prior to ischemia and insulin at reperfusion(8% ± 1.6%, P < 0.05 vs the control and GLP-1 a alone treated groups).CONCLUSION GLP-1 a pre-administration results in myocardial infarct size reduction in rats with T2 DM. These effects are maximal in rats treated with GLP-1 a pre-ischemia plus insulin at reperfusion.
文摘Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia.Type 2 diabetes (T2DM) accounting for 90% of cases globally.The worldwide prevalence of DM is rising dramatically over the last decades,from 30 million cases in 1985 to 382 million cases in 2013.It’s estimated that 451 million people had diabetes in 2017.As the pathophysiology was understood over the years,treatment options for diabetes increased.Incretin-based therapy is one of them.Glucagon-like peptide-1 receptor agonist (GLP-1 RA) not only significantly lower glucose level with minimal risk of hypoglycemia but also,they have an important advantage in themanagement of cardiovascular risk and obesity.Thus,we will review here GLP-1 RAsrole in the treatment of diabetes.
文摘AIM: To systematically assess risk of pancreatic adverse events with glucagon-like peptide-1(GLP-1) receptor agonist and dipeptidyl peptidase-4(DPP-4) inhibitor drugs.METHODS: We searched Pub Med, Embase, CINAHL, Cochrane review of clinical trials, pharmaceutical company clinical trials register, United States Food and Drug Administration website, European Medicines Agency website and Clinical Trials.gov for randomized controlled trials from inception to October 2013. Randomized control trial studies were selected for inclusion if they reported on pancreatic complication events and/or changes in pancreatic enzyme levels(serum amylase and serum lipase) as adverse events or as serious adverse events for patients who were on GLP-1 receptor agonist and DPP-4 inhibitor drugs. Two independent reviewers extracted data directly. We performed Peto odds ratio(OR) fixed effect meta-analysis of pancreatic adverse events a, and assessed heterogeneity with the I^2 statistic.RESULTS: Sixty-eight randomized controlled trials were eligible. A total of 60720 patients were included in our analysis of the association of risk of pancreatic complication events with GLP-1 agents. A total of 89 pancreatic related adverse events occurred among the GLP-1 agents compared to 74 events among the controls. There was a statistically significant increased risk of elevation of pancreatic enzymes associated with GLP-1 agents compared with control(Peto OR = 3.15, 95%CI: 1.56-6.39, P = 0.001, I2 = 0%). There was no statistically significant difference in the risk of pancreatic adverse event associated with GLP-1 agent compared with controls(Peto OR = 1.00, 95%CI: 0.73-1.37, P = 1.00, I2 = 0%). There were a total of 71 pancreatitis events in patients on GLP-1 agents and 56 pancreatitis events occurred in the control patients. There were 36 reports of pancreatic cancer in these studies. Of these cases, 2 used linagliptin, 2 used alogliptin, 1 used vildagliptin, 7 used saxagliptin while 6 used sitagliptin. The remaining 18 cases occurred among controls.CONCLUSION: Although GLP-1 based agents are associated with pancreatic enzyme elevation, we were unable to confirm a significant risk of pancreatitis or pancreatic cancer.
基金135 Project Foundation of Jiangsu Province (NO2001)
文摘Objective: To observe the effect of glucagon-like peptide 1 (GLP-1) on the gene expressions of transcription factors (PDX-1, PAX-6 and NKx2.2 ) in freshly isolated rat pancreatic islets and investigate the associated physiological and therapeutic implication of GLP-1. Methods: The isolated rat islets were incubated with 10 nmol/L GLP-1 for 1, 3 and 5 days, respectively. Total cellular RNA was extracted and the expressions of PDX-1, PAX-6 and NKx2.2 gene were detected by semiquantity RT-PCR. Results: Compared with the control group, the PDX-1, PAX-6 and NKx2.2 gene expressions were significantly increased after co-cultured with GLP-1 for 1 day (P 〈 0.05). The effect was shown in a time-dependent manner. All three gene expressions reached the peak on the 5th day. Conclusion: GLP-1 can improve the function of pancreatic islet by regulating the gene expressions of transcription factors in β cells.
文摘AIM: To investigate whether active glucagon-like peptide-1(GLP-1) is a prediction Factor of Effect of sitagliptin on patients with type 2 diabetes mellitus(GLP-1 FEST:UMIN000010645). METHODS: Seventy-six patients with type 2 diabetes, who had insufficient glycemic control [Hemoglobin A1c(Hb A1c) ≥ 7%] in spite of treatment with metformin and/or sulfonylurea, were included in the investigation. Patients were divided into three groups by tertiles of fasting plasma active GLP-1 level, before the administration of 50 mg sitagliptin. RESULTS: At baseline, body mass index, serum UA, insulin and HOMA-IR were higher in the high active GLP-1 group than in the other two groups. The high active GLP-1 group did not show any decline of Hb A1c(7.6% ± 1.4% to 7.5% ± 1.5%), whereas the middle and low groups indicated significant decline of Hb A1c(7.4 ± 0.7 to 6.8 ± 0.6 and 7.4 ± 1.2 to 6.9 ± 1.3, respectively) during six months. Only the low and middle groups showed a significant increment of active GLP-1, C-peptide level, a decreased log and proinsulin/insulin ratio after administration. In logistic analysis, the low or middle group is a significantexplanatory variable for an Hb A1 c decrease of ≥ 0.5%, and its odds ratio is 4.5(1.40-17.6)(P = 0.01) against the high active GLP-1 group. This remains independent when adjusted for Hb A1 c level before administration, patients' medical history, medications, insulin secretion and insulin resistance.CONCLUSION: Plasma fasting active GLP-1 is an independent predictive marker for the efficacy of dipeptidyl peptidase 4 inhibitor sitagliptin.
基金supported by the Key Project of Chinese Ministry of Education(No.109086)the Graduate Students'Scientific Research Program of Jiangsu province.
文摘Fatty acid modified glucagon-like peptide-1(7-36) amide was synthesized efficiently on Rink-Amide-MBHA resin by microwave-assisted solid phase method.The method of thermal and controlled microwave irradiation provided impressive enhancements in product yield,selectivity,and reaction rate.The coupling time was dramatically decreased to 6 min,and the desired products were obtained in high yield and purity.
文摘Nutritional regulation plays a critical role to reduce the incidence or progression of diabetes mellitus. In this study, we investigated the effects of a high-fat diet on Spontaneously Diabetic Torii Leprfa (SDT fatty) rats, a novel model for obese type 2 diabetes. The SDT fatty rats were divided into two dietary groups, which were fed a high-fat diet or a standard diet for 18 weeks, from 6 to 24 weeks of age. The calorie intake in the high-fat diet (HF) group was reduced after 10 weeks of age and the group inhibited an incidence of diabetes. Interestingly, the HF induced an increase of serum glucagon-like peptide-1 (GLP-1) levels in SDT fatty rats with refeeding. Fat tissue weights in the HF group increased, but the visceral fat/subcutaneous fat (V/S) ratio decreased. Moreover, histopathological observations revealed an improvement of the pancreatic abnormalities and fatty liver in the HF group. In conclusion, a preventive effect on diabetes in rats fed a high-fat diet has a relation with an increase in incretin hormone, and it might be advantageous for prevention of incidence or progression of diabetes to develop functional foods inducing an increase in incretin hormone.