The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo...The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.展开更多
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b...Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.展开更多
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand...Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit...Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
Objective To explore the role of glucocorticoid (GC) receptor (GR) in rapamycin's reversion of GC resistance in humanGC-resistant T-acute lymphoblastic leukemia (ALL) CEM-C1 cells. Methods CEM-C1 cells were cul...Objective To explore the role of glucocorticoid (GC) receptor (GR) in rapamycin's reversion of GC resistance in humanGC-resistant T-acute lymphoblastic leukemia (ALL) CEM-C1 cells. Methods CEM-C1 cells were cultured in vitro and treated with rapamycin at different concentrations with or without 1 μmol/L dexamethasone (Dex). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test was performed to assess cell proliferation. The cell cycle and cell apoptosis were analyzed by flow cytometry. The expression of GRα mRNA was determined by real-time quantitative RT-PCR. The expression of GR, p-70S6K, Mcl-1, and Bim proteins was detected by Western blot. Results When incubated with rapamycin at different concentrations, CEM-C1 cells showed significant growth inhibition in a time- and concentration-dependent manner. The growth inhibition was synergistically increased when CEM-C1 cells were treated with rapamycin plus 1 μmol/L Dex. CEM-C1 cells treated with rapamycin alone showed no apparent apoptosis, and were arrested at G0/G1 phase. After the treatment with Dex plus rapamycin, CEM-C1 cells demonstrated apparent apoptosis and increased the cell cycle arrested at G0/G1 phase. Rapamycin combined with Dex up-regulated GRα, phosphorylated GR(p-GR), and pro-apoptotic protein Bim-EL in CEM-C1 cells, but inhibited the expression of p-p70S6K, a downstream target protein ofmTOR (mammalian target of rapamycin). Conclusion After the treatment with rapamycin plus Dex, Dex resistant CEM-C1 cells induce growth inhibition and apoptosis. The underlying mechanism may involve inhibition of the mTOR signaling pathway and also be associated with up-regulation of GR expression and activation of GC-GR signaling pathway.展开更多
AIM: To determine how glucocorticoids (GCs) may affect the growth and chemosensitivity of common carcinoma cells. METHODS: The effect of dexamethasone (DEX) on growth and chemosensitivity was assessed in 14 carc...AIM: To determine how glucocorticoids (GCs) may affect the growth and chemosensitivity of common carcinoma cells. METHODS: The effect of dexamethasone (DEX) on growth and chemosensitivity was assessed in 14 carcinoma cell lines. The function of GC receptors (GR) was assessed by MMTV reporter assay. Overexpression of GR was done by in vitro transfection and expression of a GR-expressing vector. Immunohistochemical stain of tissues and ceils were done by PA1-511A, an anti-GR monodonal antibody. RESULTS: DEX inhibited cell growth of four (MCF-7, MCF- 7/MXR1, MCF-7/TPT300, and HeLa), increased cisplatin cytoxicity of one (SiHa), and decreased dsplatin cytotoxicity of two (H460 and Hep3B) cell lines. The GR content of the seven cell lines affected by DEX was significantly higher than those of the seven cell lines unaffected by DEX (5.2±2.5×10^4 sites/cell vs1.3±1.4×10^4 sites/cell, P= 0.005). Only two DEX-unresponsive cell lines {NPC-TW01 and NPC- TW04) oontained high GR amounts in the range (1.9-8.1×10^4 sites/cell) of the seven DEX-responsive cell lines. The GR function of NPC-TW01 and NPC-TW04, however, was foundto be impaired. The importance of high cellular amount of GR in mediating DEX susceptibility of the cells was further exemplified by GR dose-dependent drug resistance to cisplatin of AGS, a cell line with low GR content and was unaffected by DEX before transfection of GR-expressing vector. Immunohistochemical studies of human cancer tissues showed that 5 of the 45 (11.1%) breast cancer and 43 of the 85 (50.6%) non-small cell lung cancer had high GR contents at the ranges of the GC-responsive carcinoma cell lines. CONCLUSION: The growth and chemosensitivity of human carcinomas with high GR contents may be affected by GC. However, in light of the heterogeneous and even contradictive effects of GC on these cells, routine examination of GR contents of human carcinoma tissues may not be clinically useful until other markers that help predict the ultimate effect of GC on individual patients are identified.展开更多
BACKGROUND: Studies have explored changes in neonatal rat glucocorticoid receptor (GR) expression changes following mature brain injury. OBJECTIVE: To investigate the temporal and special changes of GR during brai...BACKGROUND: Studies have explored changes in neonatal rat glucocorticoid receptor (GR) expression changes following mature brain injury. OBJECTIVE: To investigate the temporal and special changes of GR during brain development in rats with recurrent seizures. DESIGN, TIME AND SE'n'ING: A randomized, controlled animal experiment was performed at the Department of Pediatrics, Second Xiangya Hospital of Central South University, from February 2008 to March 2009. MATERIALS: Rabbit anti-rat GR monoclonal antibody was purchased from Santa Cruz Biotechnology, USA; goat anti-rabbit IgG was purchased from Zhongshan Goldenbridge Biotechnology, China. METHODS: A total of 48 Sprague-Dawley rats, 7 days old, were randomly assigned to control and seizure groups, with 24 animals in each group. Seizures were induced by inhalant flurothyl. MAIN OUTCOME MEASURES: Changes in GR protein expression in the rat cerebral cortex were detected by Western blotting analysis and immunohistochemistry. RESULTS: GR expression in the cerebral cortex of control rats significantly increased with aging (P 〈 0.05), and varied in the frontal lobe, temporal lobe, and parietal lobe. GR was predominantly expressed in the cytoplasm early and rapidly increased in the nuclei. GR protein expression in the cerebral cortex after seizure was lower in the cytoplasm at 15 days and in nuclear protein at 19 days. CONCLUSION: GR expression displayed temporal and spatial changes in brain development. Recurrent seizures in neonatal rats cause abnormal GR expression and might play an important role in developing brain injury.展开更多
AIM: To study whether the glucocorticoid receptor (GR/ NR3C1) gene haplotypes influence the steroid therapy outcome in inflammatory bowel disease (IBD). METHODS: We sequenced all coding exons and flanking intronic seq...AIM: To study whether the glucocorticoid receptor (GR/ NR3C1) gene haplotypes influence the steroid therapy outcome in inflammatory bowel disease (IBD). METHODS: We sequenced all coding exons and flanking intronic sequences of the NR3C1 gene in 181 IBD patients, determined the single nucleotide polymorphisms, and predicted the NR3C1 haplotypes. Furthermore, we investigated whether certain NR3C1 haplotypes are significantly associated with steroid therapy outcomes. RESULTS: We detected 13 NR3C1 variants, which led to the formation of 17 different haplotypes with a certainty of > 95% in 173 individuals. The three most commonly occurring haplotypes were included in the association analysis of the influence of haplotype on steroid therapy outcome or IBD activity. None of the NR3C1 haplotypes showed statistically signifi cant association with glucocorticoid therapy success. CONCLUSION: NR3C1 haplotypes are not related to steroid therapy outcome.展开更多
AIM: To avoid the side effects of ocular hypertension of glucocorticoid(GC) usage in eye, we must identify susceptible individuals, which exists in about one-third of all population. Further, the majority of all prima...AIM: To avoid the side effects of ocular hypertension of glucocorticoid(GC) usage in eye, we must identify susceptible individuals, which exists in about one-third of all population. Further, the majority of all primary open angle glaucoma(POAG) patients show this phenotype.Glucocorticoid receptor(GR) regulates C responsiveness in trabecular meshwork(TM) cells. In this study, single nucleotide polymorphism(SNP) genotyping was used to determine whether there are differences in the Bcl I(rs41423247) and N363S(rs6195) polymorphisms of the GR gene in healthy and POAG patients, and glucocorticoid-induced ocular hypertension(GIOH)populations.METHODS: Three hundred and twenty-seven unrelated Chinese adults, including 111 normal controls, 117 GIOH subjects and 99 POAG patients, were recruited. DNA samples were prepared and the Bcl I and N363 S polymorphisms were screened using real-time polymerase chain reaction(RT-PCR)-restriction fragment length polymorphism(RFLP) analysis. Frequencies of the Bcl I and N363 S polymorphisms were determined and compared using Fisher’s exact test and the Chi-squared test.RESULTS: Only the Bcl I polymorphism was identified in the Chinese Han population. The frequency of the G allele was 21.6 % in normal controls, 18.3% in GIOH patients, and 13.64% in the POAG patients. There was no significant difference in polymorphism or allele frequency in the 3 groups. Furthermore, no N363 S polymorphism was found in the study subjects.CONCLUSION: The Bcl I polymorphisms in GR gene had no association with GIOH and POAG patients, and N363 S polymorphism might not exist in the Chinese Han population. Therefore, the Bcl I polymorphism might not be responsible for the development of GC-induced ocular hypertension or POAG.展开更多
Objective: To investigate the effect of Calpain inhibitor I on glucocorticoid receptor-dependent proteasomal degradation and its transcriptional activity. Methods: After Raw-264.7 cells were treated with Calpain inhib...Objective: To investigate the effect of Calpain inhibitor I on glucocorticoid receptor-dependent proteasomal degradation and its transcriptional activity. Methods: After Raw-264.7 cells were treated with Calpain inhibitor I, dexamethasone, or both for about 12 h, the change of glucocorticoid receptor was detected by western blot analysis. COS-7 cells were transfected with PRsh-GRα expression vector and glucocorticoid-responsive receptor pMAMneo-CAT, then the effect of Calpain inhibitor I on glucocorticoid receptor transcriptional activation ability was determined by CAT activity. Results: The glucocorticoid receptor levels decreased after RAW-264.7 cells were treated with dexamethasone for 12 hours, which effect can be inhibited by Calpain inhibitor I to some extent. CAT activity assay showed that Calpain inhibitor I enhance glucocorticoid receptor transcriptional activity. Conclusion: Calpain inhibitor I can inhibit the down-regulation of dexamethasone on glucocorticoid receptor, and enhances glucocorticoid receptor transactivation ability.展开更多
AIM To elucidate the underlying mechanism that microRNA-22(miR-22) promotes the apoptosis of rat pancreatic acinar cells(AR42 J) and the elements that regulate the expression of miR-22.METHODS One hundred nanomoles pe...AIM To elucidate the underlying mechanism that microRNA-22(miR-22) promotes the apoptosis of rat pancreatic acinar cells(AR42 J) and the elements that regulate the expression of miR-22.METHODS One hundred nanomoles per liter of caerulein(Cae)was administrated to induce the apoptosis of AR42 J cells and the apoptosis rate was detected by flow cytometry analysis. An amylase assay kit was used to measure the amylase expression level in the supernatant. Quantitative real-time PCR(qRT-PCR)was adopted to measure miR-22 expression. We used online tools to predict the potential transcription promoter of miR-22 and the binding sites, which was further identified by using luciferase reporter analysis,chromatin immunoprecipitation(ChIP) and ChIPqP CR assays. Then, a mimic of miR-22, Nr3 c1 plasmid encoding the glucocorticoid receptor(GR), and siNr3 c1 were used to transfect AR42 J cells, respectively.The mRNA expression of miR-22, Nr3 c1, and Erb-b2 receptor tyrosine kinase 3(ErbB3) was confirmed by qRT-PCR and the apoptosis rate of AR42 J cells was detected by flow cytometry analysis. Western blot was used to detect the expression of ErbB3, GR, PI3 k, PI3 kp85α, Akt, p-Akt, Bad, Bax, Bcl-xl, Bcl-2, and cleaved caspase3.RESULTS After inducing apoptosis of AR42 J cells in vitro, the expression of miR-22 was significantly increased by2.20 ± 0.26 and 4.19 ± 0.54 times, respectively, at3 h and 6 h in comparison with the control group.As revealed by qRT-PCR assay, the expression of miR-22 was 78.25 ± 6.61 times higher in the miR-22 mimic group relative to the miRNA control group,accompanied with an obviously increased acinar cell apoptosis rate(32.53 ± 1.15 vs 18.07 ± 0.89, P =0.0006). The upregulation of miR-22 could suppress its target gene, ErbB3, and the phosphorylation of PI3 k and Akt. Furthermore, we predicted the potential transcription promoter of miR-22 and the binding sites using online tools. Luciferase reporter analysis and sitedirected mutagenesis indicated that the binding site(GACAGCCATGTACA) of the GR, which is encoded by the Nr3 c1 gene. Downregulation of the expression of GR could upregulate the expression of miR-22, which further promoted the apoptosis of AR42 J cells.CONCLUSION GR transcriptionally represses the expression of miR-22,which further promotes the apoptosis of pancreatic acinar cells by downregulating the downstream signaling pathway.展开更多
Objective:Xiaoyao san(XYS)is a classic traditional Chinese medicinal formula.It has been clinically administered to regulate liver function.However,its mechanisms in glucocorticoid-induced hepatic steatosis are unknow...Objective:Xiaoyao san(XYS)is a classic traditional Chinese medicinal formula.It has been clinically administered to regulate liver function.However,its mechanisms in glucocorticoid-induced hepatic steatosis are unknown.This study aimed to investigate whether XYS protects against corticosterone(CORT)-induced hepatic steatosis,and to explore its mechanism.Methods:High-fat diet mice induced with hepatic steatosis by 2mg/kg CORT were administered 2.56 g/kg or 5.12 g/kg XYS daily for 7 weeks.The effects of XYS on hepatic steatosis in mice were evaluated by H&E and Oil Red O staining and by measuring their plasma lipids(triglyceride,total cholesterol,and free fatty acids).The mechanism of XYS against hepatic steatosis was investigated by network pharmacology,immunohistochemistry,western blotting,and gain-of-function/loss-offunction experiments.Results:XYS alleviated CORT-induced steatosis,decreased plasma lipids,and inhibited glucocorticoid receptor(GR)activation in the liver.Network pharmacology data indicated that XYS may have mitigated hepatic steatosis via GR which mediated adipose differentiation-related protein(ADFP).Gain-of-function/loss-of-function experiments in vitro confirmed that GR positively regulated ADFP expression.Conclusions:XYS ameliorated CORT-induced hepatic steatosis by downregulating the GR/ADFP axis and inhibiting lipid metabolism.Our studies implicate that XYS is promising as a therapy for CORT-induced hepatic steatosis,and lay the foundation for designing novel prophylactic and therapeutic strategies on CORT-induced hepatic steatosis.展开更多
AIM: Glucocorticoid (GC) resistant ulcerative colitis (UC) remains a serious disease and is difficult to manage. Although the molecular basis of GC insensitivity is still unknown, GC receptors (GRAAA and GRp) may play...AIM: Glucocorticoid (GC) resistant ulcerative colitis (UC) remains a serious disease and is difficult to manage. Although the molecular basis of GC insensitivity is still unknown, GC receptors (GRAAA and GRp) may play an important role in it. This study was aimed to investigate the relationship between the expression of GRa and GRp in colonic mucosal cells of patients with UC, the efficacy of GC therapy and the intensity of inflammation. METHODS: Twenty-five cases of UC were classified into: GC sensitive (n = 16) and GC resistant (n - 9) cases. Patients consisted of mild (n = 6), moderate (n = 8) and severe (n = 11) cases. GRa and GRp expression in colonic mucosal specimens were investigated by immunohistochemistry, and compared between GC resistant and sensitive groups, and also among various degrees of inflammation. RESULTS: All cases were positive for GRa and GRp expression. Both positive association between GRa expression and the response of UC to GC and strong negative association between GRp expression and the response of UC to GC were identified. There was no significant association between GRa/GRp expression and the degree of inflammation of UC. CONCLUSION: These findings suggest that both GRa and GRp may play an important role in the action of GC, and that GRp functions as a dominant negative inhibitor of GRa. Expression of GRa and GRp in colonic mucosal cells of patients with UC may serve as predictors of glucocorticoid response, but can not function as markers of inflammatory intensity.展开更多
Glucocorticoid(GC) steroid hormones are used to treat acute lymphoblastic leukemia(ALL) because of their pro-apoptotic effects in hematopoietic cells.However,not all leukemia cells are sensitive to GC,and no assay to ...Glucocorticoid(GC) steroid hormones are used to treat acute lymphoblastic leukemia(ALL) because of their pro-apoptotic effects in hematopoietic cells.However,not all leukemia cells are sensitive to GC,and no assay to stratify patients is available.In the GC-sensitive T-cell ALL cell line CEM-C7,auto-up-regulation of RNA transcripts for the glucocorticoid receptor(GR) correlates with increased apoptotic response.This study aimed to determine if a facile assay of GR transcript levels might be promising for stratifying ALL patients into hormone-sensitive and hormone-resistant populations.The GR transcript profiles of various lymphoid cell lines and 4 bone marrow samples from patients with T-cell ALL were analyzed using both an optimized branched DNA(bDNA) assay and a real-time quantitative reverse transcription-polymerase chain reaction assay.There were significant correlations between both assay platforms when measuring total GR(exon 5/6) transcripts in various cell lines and patient samples,but not for a probe set that detects a specific,low abundance GR transcript(exon 1A3).Our results suggest that the bDNA platform is reproducible and precise when measuring total GR transcripts and,with further development,may ultimately offer a simple clinical assay to aid in the prediction of GC-sensitivity in ALL patients.展开更多
Purpose : We studied the pathogenesis of glucocorticoid-induced glucoma (GIG) through characterization of glucocorticoid receptor (GR) on lymphocytes in Chinese patients with GIG.Methods:By radioligand receptor bindin...Purpose : We studied the pathogenesis of glucocorticoid-induced glucoma (GIG) through characterization of glucocorticoid receptor (GR) on lymphocytes in Chinese patients with GIG.Methods:By radioligand receptor binding followed by Scatchard analysis, the specific binding sites were characterized and quantitated for glucocorticoid receptors on peripheral blood lymphocytes obtained from patients with GIG and the control group.Results:The binding sites we detected were as follows; 12.7 ± 1.47 × 103 receptors per cell with a KD of 3.02 ± 0.62nmol/L in patients with GIG, 7.26 ± 0.45 × 103 receptors per cell with a KD of 3.03 ± 0.56nmol/L in the control group. The statistical difference of receptors per cell is significant between two groups (p < 0.05), patients with GIG having more GR binding sites, while the difference of Kd is not significant ( p > 0.05 ) . Conclusion: The preliminary findings suggest that patients with GIG are more sensitive to glucocorticoid and the increase of binding sites of展开更多
基金supported by the National Natural Science Foundation of China,No.82371444(to YZ)the Natural Science Foundation of Hubei Province,No.2022CFB216(to XC)the Key Research Project of Ministry of Science and Technology of China,No.2022ZD021160(to YZ)。
文摘The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
文摘Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.
基金supported by the National Natural Science Foundation of China(Key Program),No.11932013the National Natural Science Foundation of China(General Program),No.82272255+2 种基金Armed Police Force High-Level Science and Technology Personnel ProjectThe Armed Police Force Focuses on Supporting Scientific and Technological Innovation TeamsKey Project of Tianjin Science and Technology Plan,No.20JCZDJC00570(all to XC)。
文摘Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.82201460(to YH)Nanjing Medical University Science and Technology Development Fund,No.NMUB20210202(to YH).
文摘Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金supported by the research funds from the University Program for Changjiang Scholars and Innovative Research Team(No.IRT0935)the National Natural Science Fund Project(No.30973237)grants from the Department of Science and Technology of Sichuan Province(No.2008JY0029-1,No.07FG002-024,and No.2010JY0004)
文摘Objective To explore the role of glucocorticoid (GC) receptor (GR) in rapamycin's reversion of GC resistance in humanGC-resistant T-acute lymphoblastic leukemia (ALL) CEM-C1 cells. Methods CEM-C1 cells were cultured in vitro and treated with rapamycin at different concentrations with or without 1 μmol/L dexamethasone (Dex). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test was performed to assess cell proliferation. The cell cycle and cell apoptosis were analyzed by flow cytometry. The expression of GRα mRNA was determined by real-time quantitative RT-PCR. The expression of GR, p-70S6K, Mcl-1, and Bim proteins was detected by Western blot. Results When incubated with rapamycin at different concentrations, CEM-C1 cells showed significant growth inhibition in a time- and concentration-dependent manner. The growth inhibition was synergistically increased when CEM-C1 cells were treated with rapamycin plus 1 μmol/L Dex. CEM-C1 cells treated with rapamycin alone showed no apparent apoptosis, and were arrested at G0/G1 phase. After the treatment with Dex plus rapamycin, CEM-C1 cells demonstrated apparent apoptosis and increased the cell cycle arrested at G0/G1 phase. Rapamycin combined with Dex up-regulated GRα, phosphorylated GR(p-GR), and pro-apoptotic protein Bim-EL in CEM-C1 cells, but inhibited the expression of p-p70S6K, a downstream target protein ofmTOR (mammalian target of rapamycin). Conclusion After the treatment with rapamycin plus Dex, Dex resistant CEM-C1 cells induce growth inhibition and apoptosis. The underlying mechanism may involve inhibition of the mTOR signaling pathway and also be associated with up-regulation of GR expression and activation of GC-GR signaling pathway.
基金Supported by grants from the National Science Council No.NSC 93-2314-B-002-006, Taiwan, and grants from National Taiwan University Hospital 91-N006
文摘AIM: To determine how glucocorticoids (GCs) may affect the growth and chemosensitivity of common carcinoma cells. METHODS: The effect of dexamethasone (DEX) on growth and chemosensitivity was assessed in 14 carcinoma cell lines. The function of GC receptors (GR) was assessed by MMTV reporter assay. Overexpression of GR was done by in vitro transfection and expression of a GR-expressing vector. Immunohistochemical stain of tissues and ceils were done by PA1-511A, an anti-GR monodonal antibody. RESULTS: DEX inhibited cell growth of four (MCF-7, MCF- 7/MXR1, MCF-7/TPT300, and HeLa), increased cisplatin cytoxicity of one (SiHa), and decreased dsplatin cytotoxicity of two (H460 and Hep3B) cell lines. The GR content of the seven cell lines affected by DEX was significantly higher than those of the seven cell lines unaffected by DEX (5.2±2.5×10^4 sites/cell vs1.3±1.4×10^4 sites/cell, P= 0.005). Only two DEX-unresponsive cell lines {NPC-TW01 and NPC- TW04) oontained high GR amounts in the range (1.9-8.1×10^4 sites/cell) of the seven DEX-responsive cell lines. The GR function of NPC-TW01 and NPC-TW04, however, was foundto be impaired. The importance of high cellular amount of GR in mediating DEX susceptibility of the cells was further exemplified by GR dose-dependent drug resistance to cisplatin of AGS, a cell line with low GR content and was unaffected by DEX before transfection of GR-expressing vector. Immunohistochemical studies of human cancer tissues showed that 5 of the 45 (11.1%) breast cancer and 43 of the 85 (50.6%) non-small cell lung cancer had high GR contents at the ranges of the GC-responsive carcinoma cell lines. CONCLUSION: The growth and chemosensitivity of human carcinomas with high GR contents may be affected by GC. However, in light of the heterogeneous and even contradictive effects of GC on these cells, routine examination of GR contents of human carcinoma tissues may not be clinically useful until other markers that help predict the ultimate effect of GC on individual patients are identified.
基金the National Natural Science Foundation of China,No.30400483the Natural Science Foundation of Hunan Province,No.07JJ5020
文摘BACKGROUND: Studies have explored changes in neonatal rat glucocorticoid receptor (GR) expression changes following mature brain injury. OBJECTIVE: To investigate the temporal and special changes of GR during brain development in rats with recurrent seizures. DESIGN, TIME AND SE'n'ING: A randomized, controlled animal experiment was performed at the Department of Pediatrics, Second Xiangya Hospital of Central South University, from February 2008 to March 2009. MATERIALS: Rabbit anti-rat GR monoclonal antibody was purchased from Santa Cruz Biotechnology, USA; goat anti-rabbit IgG was purchased from Zhongshan Goldenbridge Biotechnology, China. METHODS: A total of 48 Sprague-Dawley rats, 7 days old, were randomly assigned to control and seizure groups, with 24 animals in each group. Seizures were induced by inhalant flurothyl. MAIN OUTCOME MEASURES: Changes in GR protein expression in the rat cerebral cortex were detected by Western blotting analysis and immunohistochemistry. RESULTS: GR expression in the cerebral cortex of control rats significantly increased with aging (P 〈 0.05), and varied in the frontal lobe, temporal lobe, and parietal lobe. GR was predominantly expressed in the cytoplasm early and rapidly increased in the nuclei. GR protein expression in the cerebral cortex after seizure was lower in the cytoplasm at 15 days and in nuclear protein at 19 days. CONCLUSION: GR expression displayed temporal and spatial changes in brain development. Recurrent seizures in neonatal rats cause abnormal GR expression and might play an important role in developing brain injury.
基金Supported by The Swiss IBD Cohort Study (SNF Grant 33CSC0-108792)the Swiss National Science Foundation (Grant 32-120463/1)+2 种基金the Zurich University Research Priority Pro-gramme "Integrative Human Physiology" (ZIHP)the Center of Clinical Research at the University Hospital Zurichthe Novartis Foundation for Biomedical Research
文摘AIM: To study whether the glucocorticoid receptor (GR/ NR3C1) gene haplotypes influence the steroid therapy outcome in inflammatory bowel disease (IBD). METHODS: We sequenced all coding exons and flanking intronic sequences of the NR3C1 gene in 181 IBD patients, determined the single nucleotide polymorphisms, and predicted the NR3C1 haplotypes. Furthermore, we investigated whether certain NR3C1 haplotypes are significantly associated with steroid therapy outcomes. RESULTS: We detected 13 NR3C1 variants, which led to the formation of 17 different haplotypes with a certainty of > 95% in 173 individuals. The three most commonly occurring haplotypes were included in the association analysis of the influence of haplotype on steroid therapy outcome or IBD activity. None of the NR3C1 haplotypes showed statistically signifi cant association with glucocorticoid therapy success. CONCLUSION: NR3C1 haplotypes are not related to steroid therapy outcome.
文摘AIM: To avoid the side effects of ocular hypertension of glucocorticoid(GC) usage in eye, we must identify susceptible individuals, which exists in about one-third of all population. Further, the majority of all primary open angle glaucoma(POAG) patients show this phenotype.Glucocorticoid receptor(GR) regulates C responsiveness in trabecular meshwork(TM) cells. In this study, single nucleotide polymorphism(SNP) genotyping was used to determine whether there are differences in the Bcl I(rs41423247) and N363S(rs6195) polymorphisms of the GR gene in healthy and POAG patients, and glucocorticoid-induced ocular hypertension(GIOH)populations.METHODS: Three hundred and twenty-seven unrelated Chinese adults, including 111 normal controls, 117 GIOH subjects and 99 POAG patients, were recruited. DNA samples were prepared and the Bcl I and N363 S polymorphisms were screened using real-time polymerase chain reaction(RT-PCR)-restriction fragment length polymorphism(RFLP) analysis. Frequencies of the Bcl I and N363 S polymorphisms were determined and compared using Fisher’s exact test and the Chi-squared test.RESULTS: Only the Bcl I polymorphism was identified in the Chinese Han population. The frequency of the G allele was 21.6 % in normal controls, 18.3% in GIOH patients, and 13.64% in the POAG patients. There was no significant difference in polymorphism or allele frequency in the 3 groups. Furthermore, no N363 S polymorphism was found in the study subjects.CONCLUSION: The Bcl I polymorphisms in GR gene had no association with GIOH and POAG patients, and N363 S polymorphism might not exist in the Chinese Han population. Therefore, the Bcl I polymorphism might not be responsible for the development of GC-induced ocular hypertension or POAG.
文摘Objective: To investigate the effect of Calpain inhibitor I on glucocorticoid receptor-dependent proteasomal degradation and its transcriptional activity. Methods: After Raw-264.7 cells were treated with Calpain inhibitor I, dexamethasone, or both for about 12 h, the change of glucocorticoid receptor was detected by western blot analysis. COS-7 cells were transfected with PRsh-GRα expression vector and glucocorticoid-responsive receptor pMAMneo-CAT, then the effect of Calpain inhibitor I on glucocorticoid receptor transcriptional activation ability was determined by CAT activity. Results: The glucocorticoid receptor levels decreased after RAW-264.7 cells were treated with dexamethasone for 12 hours, which effect can be inhibited by Calpain inhibitor I to some extent. CAT activity assay showed that Calpain inhibitor I enhance glucocorticoid receptor transcriptional activity. Conclusion: Calpain inhibitor I can inhibit the down-regulation of dexamethasone on glucocorticoid receptor, and enhances glucocorticoid receptor transactivation ability.
基金National Natural Science Foundation of China,No.31671440
文摘AIM To elucidate the underlying mechanism that microRNA-22(miR-22) promotes the apoptosis of rat pancreatic acinar cells(AR42 J) and the elements that regulate the expression of miR-22.METHODS One hundred nanomoles per liter of caerulein(Cae)was administrated to induce the apoptosis of AR42 J cells and the apoptosis rate was detected by flow cytometry analysis. An amylase assay kit was used to measure the amylase expression level in the supernatant. Quantitative real-time PCR(qRT-PCR)was adopted to measure miR-22 expression. We used online tools to predict the potential transcription promoter of miR-22 and the binding sites, which was further identified by using luciferase reporter analysis,chromatin immunoprecipitation(ChIP) and ChIPqP CR assays. Then, a mimic of miR-22, Nr3 c1 plasmid encoding the glucocorticoid receptor(GR), and siNr3 c1 were used to transfect AR42 J cells, respectively.The mRNA expression of miR-22, Nr3 c1, and Erb-b2 receptor tyrosine kinase 3(ErbB3) was confirmed by qRT-PCR and the apoptosis rate of AR42 J cells was detected by flow cytometry analysis. Western blot was used to detect the expression of ErbB3, GR, PI3 k, PI3 kp85α, Akt, p-Akt, Bad, Bax, Bcl-xl, Bcl-2, and cleaved caspase3.RESULTS After inducing apoptosis of AR42 J cells in vitro, the expression of miR-22 was significantly increased by2.20 ± 0.26 and 4.19 ± 0.54 times, respectively, at3 h and 6 h in comparison with the control group.As revealed by qRT-PCR assay, the expression of miR-22 was 78.25 ± 6.61 times higher in the miR-22 mimic group relative to the miRNA control group,accompanied with an obviously increased acinar cell apoptosis rate(32.53 ± 1.15 vs 18.07 ± 0.89, P =0.0006). The upregulation of miR-22 could suppress its target gene, ErbB3, and the phosphorylation of PI3 k and Akt. Furthermore, we predicted the potential transcription promoter of miR-22 and the binding sites using online tools. Luciferase reporter analysis and sitedirected mutagenesis indicated that the binding site(GACAGCCATGTACA) of the GR, which is encoded by the Nr3 c1 gene. Downregulation of the expression of GR could upregulate the expression of miR-22, which further promoted the apoptosis of AR42 J cells.CONCLUSION GR transcriptionally represses the expression of miR-22,which further promotes the apoptosis of pancreatic acinar cells by downregulating the downstream signaling pathway.
基金the National Natural Science Foundation of China(Nos.81630104 and 81622050).
文摘Objective:Xiaoyao san(XYS)is a classic traditional Chinese medicinal formula.It has been clinically administered to regulate liver function.However,its mechanisms in glucocorticoid-induced hepatic steatosis are unknown.This study aimed to investigate whether XYS protects against corticosterone(CORT)-induced hepatic steatosis,and to explore its mechanism.Methods:High-fat diet mice induced with hepatic steatosis by 2mg/kg CORT were administered 2.56 g/kg or 5.12 g/kg XYS daily for 7 weeks.The effects of XYS on hepatic steatosis in mice were evaluated by H&E and Oil Red O staining and by measuring their plasma lipids(triglyceride,total cholesterol,and free fatty acids).The mechanism of XYS against hepatic steatosis was investigated by network pharmacology,immunohistochemistry,western blotting,and gain-of-function/loss-offunction experiments.Results:XYS alleviated CORT-induced steatosis,decreased plasma lipids,and inhibited glucocorticoid receptor(GR)activation in the liver.Network pharmacology data indicated that XYS may have mitigated hepatic steatosis via GR which mediated adipose differentiation-related protein(ADFP).Gain-of-function/loss-of-function experiments in vitro confirmed that GR positively regulated ADFP expression.Conclusions:XYS ameliorated CORT-induced hepatic steatosis by downregulating the GR/ADFP axis and inhibiting lipid metabolism.Our studies implicate that XYS is promising as a therapy for CORT-induced hepatic steatosis,and lay the foundation for designing novel prophylactic and therapeutic strategies on CORT-induced hepatic steatosis.
文摘AIM: Glucocorticoid (GC) resistant ulcerative colitis (UC) remains a serious disease and is difficult to manage. Although the molecular basis of GC insensitivity is still unknown, GC receptors (GRAAA and GRp) may play an important role in it. This study was aimed to investigate the relationship between the expression of GRa and GRp in colonic mucosal cells of patients with UC, the efficacy of GC therapy and the intensity of inflammation. METHODS: Twenty-five cases of UC were classified into: GC sensitive (n = 16) and GC resistant (n - 9) cases. Patients consisted of mild (n = 6), moderate (n = 8) and severe (n = 11) cases. GRa and GRp expression in colonic mucosal specimens were investigated by immunohistochemistry, and compared between GC resistant and sensitive groups, and also among various degrees of inflammation. RESULTS: All cases were positive for GRa and GRp expression. Both positive association between GRa expression and the response of UC to GC and strong negative association between GRp expression and the response of UC to GC were identified. There was no significant association between GRa/GRp expression and the degree of inflammation of UC. CONCLUSION: These findings suggest that both GRa and GRp may play an important role in the action of GC, and that GRp functions as a dominant negative inhibitor of GRa. Expression of GRa and GRp in colonic mucosal cells of patients with UC may serve as predictors of glucocorticoid response, but can not function as markers of inflammatory intensity.
基金supported in part by a grant from NCI (No.CA116042) to W.V.Vedeckis
文摘Glucocorticoid(GC) steroid hormones are used to treat acute lymphoblastic leukemia(ALL) because of their pro-apoptotic effects in hematopoietic cells.However,not all leukemia cells are sensitive to GC,and no assay to stratify patients is available.In the GC-sensitive T-cell ALL cell line CEM-C7,auto-up-regulation of RNA transcripts for the glucocorticoid receptor(GR) correlates with increased apoptotic response.This study aimed to determine if a facile assay of GR transcript levels might be promising for stratifying ALL patients into hormone-sensitive and hormone-resistant populations.The GR transcript profiles of various lymphoid cell lines and 4 bone marrow samples from patients with T-cell ALL were analyzed using both an optimized branched DNA(bDNA) assay and a real-time quantitative reverse transcription-polymerase chain reaction assay.There were significant correlations between both assay platforms when measuring total GR(exon 5/6) transcripts in various cell lines and patient samples,but not for a probe set that detects a specific,low abundance GR transcript(exon 1A3).Our results suggest that the bDNA platform is reproducible and precise when measuring total GR transcripts and,with further development,may ultimately offer a simple clinical assay to aid in the prediction of GC-sensitivity in ALL patients.
基金This paper was supported by Natural Science Foundation of Guangdong Province (940547)
文摘Purpose : We studied the pathogenesis of glucocorticoid-induced glucoma (GIG) through characterization of glucocorticoid receptor (GR) on lymphocytes in Chinese patients with GIG.Methods:By radioligand receptor binding followed by Scatchard analysis, the specific binding sites were characterized and quantitated for glucocorticoid receptors on peripheral blood lymphocytes obtained from patients with GIG and the control group.Results:The binding sites we detected were as follows; 12.7 ± 1.47 × 103 receptors per cell with a KD of 3.02 ± 0.62nmol/L in patients with GIG, 7.26 ± 0.45 × 103 receptors per cell with a KD of 3.03 ± 0.56nmol/L in the control group. The statistical difference of receptors per cell is significant between two groups (p < 0.05), patients with GIG having more GR binding sites, while the difference of Kd is not significant ( p > 0.05 ) . Conclusion: The preliminary findings suggest that patients with GIG are more sensitive to glucocorticoid and the increase of binding sites of